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We study whether long-term exposure to air pollution impairs cognition 

among the US Medicare population. We link fifteen years of administra-

tive records for 7.4 million adults age 65 and older to the Environmental 

Protection Agency’s air-quality monitoring network to track the evolution 

of individuals’ health, onset of Alzheimer’s disease and related forms of 

dementia, financial decisions, and cumulative exposure to fine-particulate 

air pollution (PM2.5) based on their precise residential locations. We see 

evidence of Tiebout’s mechanism at work: movers tend to move to less 

polluted neighborhoods but, among movers, those who are older and those 

with dementia tend to move to more polluted neighborhoods. We develop 

several strategies to address residential sorting, including utilizing quasi-

random variation in PM2.5 exposures stemming from the EPA’s initial 

(2005) designation of nonattainment counties for PM2.5. Across a range of 

models and identification strategies, we find that a 1 microgram per cubic 

meter (μg/m
3
) increase in decadal exposure to PM2.5 (8.5% of the mean) 

increases the prevalence of dementia by 1% to 3%. We also find that high-

er cumulative exposures to PM2.5 impair financial decision making among 

those not diagnosed with dementia, where the magnitudes of the effects 

are 4% to 6% of the effect of dementia on decision making. Finally, we 

find no evidence that exposure to PM2.5 affects the diagnosis rates for 

morbidities thought to be unrelated to air-pollution and no evidence that 

pollutants other than PM2.5 impair cognition, providing evidence against 

confounding. 
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Air pollution degrades human capital. Economists have demonstrated that short-term ex-

posures to elevated pollution during childhood constrain the production of human capital 

as observed from increased school absences (Currie et al. 2009) and decreased scores on 

high-stakes exams (Ebenstein, Lavy and Roth 2016). Among adults, higher daily levels 

of air pollution reduce contemporaneous measures of labor productivity in both cognitive 

and manual tasks (Graff-Zivin and Neidell 2012; Chang et al. 2016a,b). These short-term 

exposures can have long-lasting implications: higher exposures during the fetal period 

and early infancy have been shown to decrease wages and labor-force participation in 

adulthood (Sanders 2012; Isen, Rossin-Slater, and Walker 2017). By contrast, little is 

known about the effects of long-term exposure on cognition among older adults. Medical 

and epidemiological studies point to potential pathways through which air pollution may 

impair cognition, especially in the case of fine particulate matter (PM2.5)—airborne par-

ticulates smaller than 2.5 microns in diameter. The small size of PM2.5 allows it to remain 

airborne longer, to penetrate buildings, to be inhaled easier, and to reach and accumulate 

within brain tissue.
1
 Accumulation over time can cause neuroinflammation, leading to 

symptoms of dementia (Block et al. 2012; Wilker et al. 2015; Cacciottolo et al. 2017; 

Underwood 2017). While suggestive, this medical evidence comes primarily from animal 

studies or small non-representative human cohorts. The degree to which long-term expo-

sure to air pollution systematically impairs cognition among people age 65 and above 

remains unknown.  

This article is the first nationally representative longitudinal study of how long-term 

exposure to air pollution affects cognitive impairment among people age 65 and above. 

We assembled fifteen years of administrative Medicare records on 7.4 million people, 

tracking their health, demographics, residential exposures to air pollutants, and financial 

decisions. These data are well-suited to studying how pollution affects cognitive impair-

ment. First, adults over 65 are the wealthiest and the fastest-growing age group in the 

United States. Second, the data include two important measures of their cognitive im-

pairment—the diagnosis of dementia, and the outcomes of their financial decisions in 

                                                 
1 A recent study published in the Proceedings of the National Academy of Sciences of the United States has found accumulated partic-
ulate matter in brain samples from thirty-seven autopsied individuals (Maher et al. (2016)).  
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high-stakes markets. Dementia is prevalent among this age group, impairing their 

“memory, thinking, orientation, comprehension, calculation, learning capacity, language 

and judgement…emotional control [and] social behavior”, thereby disrupting people’s 

relationships and limiting their abilities to perform basic activities of daily living.
2
 About 

one percent of Americans are diagnosed with Alzheimer’s disease and related forms of 

dementia in their early sixties, and the share roughly doubles with each additional five 

years of age; for Americans aged eighty-five and above, roughly one-third have received 

a dementia diagnosis (Hirtz et al. 2007, Querfurth and LaFerla 2010). Alzheimer’s dis-

ease specifically is the sixth leading cause of death in the United States, and in 2016 

alone it accounted for $240 billion in direct expenditures on healthcare services and 18 

billion hours of labor by unpaid caregivers (Alzheimer’s Association 2017).
3
 Further-

more, this age group faces a host of complex and important financial decisions, such as 

health insurance choices and retirement planning, which economists have often used to 

evaluate the quality of financial decision making (see Keane and Thorp (2016) for a 

summary).
4
   

Our empirical research designs leverage the strengths of these data to mitigate poten-

tial sources of bias and strengthen our ability to draw causal inferences. The data allow us 

to track each person’s residential address from 1999 through 2013 including the timing 

and location of any moves. We link these data to the US Environmental Protection Agen-

cy’s (EPA’s) national network of air quality monitors to construct individual-specific, 

long-term measures of cumulative exposures to PM2.5 and five other federally regulated 

air pollutants (particulate matter smaller than 10 microns, ozone, carbon monoxide, nitro-

gen dioxide, and sulfur dioxide). The Medicare data also provide many individual charac-

teristics, including the diagnosis dates of dementia and a wide range of other illnesses. In 

                                                 
2 The ICD-10 defines dementia (F00-F03) as “a syndrome due to disease of the brain, usually of a chronic or progressive nature, in 
which there is disturbance of multiple higher cortical functions, including memory, thinking, orientation, comprehension, calculation, 

learning capacity, language and judgement. Consciousness is not clouded. The impairments of cognitive function are commonly ac-

companied, and occasionally preceded, by deterioration in emotional control, social behavior, or motivation. This syndrome occurs in 
Alzheimer disease, in cerebrovascular disease, and in other conditions primarily or secondarily affecting the brain.” 
3 The ICD-10 defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset of de-

mentia. Impairment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias and a global loss 
of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the 

triad of senile plaques; neurofibrillary tangles; and neuropil threads”. 
4 The US Census Bureau (2017) projects that the share of Americans over age 65 will increase from 15% in 2014 to 21% by 2030 and 
24% by 2060. 
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addition to serving as controls, these other diagnoses allow us to design placebo tests for 

illnesses that may be related to socioeconomic status and location decisions, but are not a 

priori suspected to be caused by air pollution. These placebo tests are designed to assess 

whether our research design overcomes many of the well-known threats to identifying 

how air pollution affects people, such as residential sorting which could bias our esti-

mates away from zero if people who were healthier, wealthier, and better-educated sys-

tematically migrated to less-polluted areas based on characteristics that may mitigate 

health shocks or improve economic outcomes (Kuminoff, Smith, and Timmins 2013, 

Dominici, Greenstone, and Sunstein 2014).  

We address residential sorting and other potential sources of confounding through 

two complementary econometric designs. First, we adapt Chay and Greenstone’s (2005) 

instrumental variables approach to utilize exogenous variation in PM2.5 concentrations 

caused by a strengthening of Clean Air Act regulations in 2005. We show that the new 

regulations lowered PM2.5 in relatively polluted areas that the EPA designated as being 

out of attainment with a new federal standard on maximum allowable PM2.5 concentra-

tions. We leverage the difference in regulatory intensity between attainment and nonat-

tainment counties as an exogenous source of variation in their residents’ decadal expo-

sures to PM2.5 conditional on a large set of covariates and baseline conditions. We find 

that a 1 microgram per cubic meter (μg/m
3
) (8%) decrease in ten-year annual average 

hourly concentrations of PM2.5 led to a 0.4 percentage point (3%) reduction in the preva-

lence of dementia between 2004 and 2013. We show that this result is stable across a 

range of model specifications and that the effects are driven by PM2.5, rather than other 

pollutants.  

Second, we rely on within-county variation across individuals in residential exposure 

to PM2.5 and other pollutants to identify their effects on dementia and financial decision 

making. We focus on individuals who were not diagnosed with dementia at the start of 

the decade and analyze how pollution exposure affects their probability of being diag-

nosed with dementia over the decade. Our specifications include county fixed effects and 

numerous individual-specific covariates, including baseline medical expenditures and 
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health, race, and flexible spline functions in age-by-gender, along with covariates de-

scribing socioeconomic characteristics of the individual’s neighborhood including Census 

block group measures of educational attainment, income, and the housing stock. Thus, for 

those who do not change residences, the effects of PM2.5 are identified by within-county 

heterogeneity in long-term cumulative air-pollution exposures. This heterogeneity arises 

from local variation in emissions, wind patterns, and geography. For those who change 

residences, we observe an additional source of variation in pollution exposure. Based on 

these sources of variation in PM2.5, a variety of econometric specifications suggest that 

higher cumulative exposures increase an individual’s probability of being diagnosed with 

dementia. Among those who are still alive at the end of the decade, a 1 μg/m
3
 increase in 

average decadal exposure increases the diagnosis probability by 1%. We show that this 

result is stable over time and driven by cumulative, rather than short-term, exposure. Fur-

ther, the effect is observed for PM2.5 alone, not other federally regulated air pollutants. 

This non-finding, coupled with evidence from the placebo tests that PM2.5 appears not to 

affect medical diagnoses thought to be unrelated to air pollution, reinforce the causal in-

terpretation of our findings for the effects of PM2.5 on dementia.  

We find similar evidence for the impact of PM2.5 on financial decision making. As 

expected, we find that dementia impairs financial decision making. However, even 

among those individuals not diagnosed with dementia, long-term cumulative exposure to 

PM2.5 negatively impacts a range of measures that prior studies used to assess the quality 

of consumers’ choices in markets for prescription drug insurance plans (Keane and Thorp 

2016). In particular, a 1 μg/m
3
 increase in average decadal exposure to PM2.5 is shown to 

increase potential savings by $4 (a 1% increase relative to the mean) and increase the 

probability of choosing a plan that is dominated by another in terms of cost, risk protec-

tion, and quality by 0.25 to 0.43 percentage points (a 0.5% to 1.2% increase relative to 

the mean). These effects are 3% to 6% of the size of the effects that a dementia diagnosis 

has on the same outcomes.  

I. Air Pollution, Human Capital, and Cognitive Impairment 

Air pollution reduces the aggregate stock of human capital by increasing morbidity 
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and mortality (Chay and Greenstone (2003), Currie and Neidell (2005), Currie and Walk-

er (2011), Neidell (2004, 2009), Dominici, Greenstone, and Sunstein (2014), Schlenker 

and Walker (2016), Deryungina et al. (2016), Deschenes, Greenstone and Shapiro 

(2017)).
5
 Air pollution degrades human capital even apart from its effects on specific 

medical diagnoses and death. Higher exposure to air pollution during childhood, begin-

ning in utero, constrains the production of human capital via increased school absences 

and lower scores on standardized exams (Ransom and Pope (1992), Currie et al. (2009), 

Sanders (2012), Ebenstein, Lavy, and Roth (2016)). These negative effects persist to 

adulthood. Isen, Rossin-Slater, and Walker (2017) demonstrate that, all else constant, 

people who were exposed to more air pollution in their birth year have lower earnings 

and lower labor force participation at age 30. Conditional on participation, hourly and 

daily spikes in pollution have also been shown to reduce workers’ labor productivity in 

both manual and cognitive tasks (Graff-Zivin and Neidell (2012), Chang et al. (2016a,b)). 

Complementary evidence from laboratory experiments suggests that adults perform 

worse on tests of cognition on days with higher pollutant concentrations (Chen et al. 

(2017b)). Among the various pollutants, PM2.5 is believed to pose the greatest threat to 

contemporaneous cognition, in part because it easily penetrates buildings and pollutes 

indoor air (Graff-Zivin and Neidell (2013), Chang et al. (2016b)).  

In contrast, little is known about the extent to which long term exposure to air pollu-

tion affects cognitive impairment outside of suggestive evidence from medical studies. 

Studies tracking small, specialized cohorts across time and space have found that higher 

cumulative exposure to air pollution over multiple years is positively associated with the 

prevalence of dementia.
6
 This evidence is complemented by clinical studies suggesting 

                                                 
5 See Graff-Zivin and Neidell (2013) for a review of the literature. 
6 Wu et al (2015) found associations between 3 years of exposure to particulate matter between 2.5 and 10 microns (PM10) and ozone 
and diagnosis of dementia using a case-control study of several hundred northern Taiwanese people. Weuve et al (2014) found associ-

ations between long term exposure to PM2.5 and PM10 and cognitive decline in a cohort study of several hundred American female 

nurses ages 70-81. Chen et al. (2017a) found that living near major roadways is associated with substantial increases in the incidences 
of dementia and cognitive impairment. Their study leveraged administrative data to define a population-representative cohort for 

Ontario, Canada. Chen et al (2017b) relied on a panel survey in China to find that greater current and cumulative pollution exposure to 

an index measure of sulfur dioxide (SO2), nitrogen dioxide (NO2), and PM10 was associated with declines in survey-based cognitive 
test scores. However, like prior studies these two most recent articles were unable to directly observe individuals’ exposures to indi-

vidual pollutants, health behaviors, socioeconomic status and long-term migration patterns. As a result, prior work has had limited 

ability to account for confounding factors such as low wealth, education or general health that might result in individuals at higher risk 
for dementia choosing to live in more polluted areas.  
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multiple pathways by which air pollution, and fine particulates specifically, may impair 

cognition (Chen and Schwartz (2009), Block et al. (2012), Weuve et al. (2012), Wilker et 

al. (2015), Wu et al. (2015), Allen et al. (2016), Cacciottolo et al. (2017)). First, pollution 

exposure is linked to increased risk for strokes among older adults (e.g., Wellenius et al. 

(2012)), which cause vascular dementia (Ng, Turek, and Hakim (2013)). Second, post-

mortem analysis has detected PM2.5 in human brains. People living in more polluted are-

as, such as near roadways, for long periods tend to have elevated concentrations of PM2.5 

in their brains, smaller brain volume, and higher rates of brain infarcts or areas of necro-

sis (Wilker et al. (2015)). Additionally, controlled exposure of mice to air pollution in 

laboratory experiments results in neuroinflammation (Block et al. (2012)). These path-

ways suggest that prolonged exposure to elevated levels of pollution may trigger and/or 

accelerate dementia (Underwood (2017)).  

Furthermore, economic research points to several pathways through which cognitive 

impairment may negatively affect financial decision making. First, cognitive impairment 

can affect decision making by increasing the cost of cognitive processing which is re-

quired to make decisions, or even render them impossible apart without assistance from 

others, which may introduce agency problems. Agarwal et al. (2009) document that as 

people age they tend to leave more money on the table in credit markets while Keane et 

al. (2017) find that Medicare beneficiaries diagnosed with dementia are less likely to 

comprehend key institutional features of insurance markets and more likely to make deci-

sions that appear to be suboptimal. Second, the marginal utility of consumption may be 

health-state dependent and declining in chronic conditions such as dementia (Finkelstein, 

Luttmer and Notowidigdo (2013)). Third, prior research has identified discount rates as 

one of the key sources of heterogeneity in financial decision making; old age, life expec-

tancy, and diagnosis of chronic conditions specifically increase discount rates (Huffman, 

Maurer, and Mitchell (2016), Oster, Shoulson, and Dorsey (2013)). Fourth, because cog-

nitive impairment can reduce life expectancy (or quality-adjusted life expectancy) it may 

reduce investments in health capital, leading to additional chronic conditions that increase 

the complexity of decisions about health insurance (Fang et al. 2007).  
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II. Data 

We used administrative records from the Centers for Medicare and Medicaid Services 

(CMS) to develop a national longitudinal database linking people’s residential address 

histories, medical claims, demographic characteristics, and enrollment decisions for pre-

scription drug insurance plans. We start with a random 10% sample from the universe of 

Medicare beneficiaries aged 65 and over between 1999 and 2013 (about 12.5 million 

people). We then obtain an independent, random 20% sample from the universe of bene-

ficiaries aged 65 and over who purchase standalone prescription drug insurance plans 

(PDPs) through Medicare Part D at any point between 2006 and 2010 without the aid of 

low-income subsidies (about 2 million people).
7
 The union of these samples contains 13.6 

million people.  

We drop two groups of people due to data limitations. First, we drop 2.7 million peo-

ple who have an unidentifiable residential location at any point between 1999 and 2013.
8
 

Second, we drop 3.6 million people who ever enrolled in Medicare Advantage plans, 

which replace traditional Medicare with a managed care plan. CMS lacks data on these 

individuals’ dementia diagnoses. These two exclusions seem unlikely to compromise ex-

ternal validity. Appendix Tables A1 and A2 report summary statistics for our estimation 

sample and the excluded subsets. The excluded individuals are generally similar to those 

in our estimation sample in terms of their average demographics, longevity and, when 

observable, medical conditions, health expenditures, pollution exposure, and Census 

block group demographics.  

Our final estimation sample consists of 7.4 million individuals who we observe for 

61.9 million person-years.
9
 Administrative records identify 44% of these individuals as 

male and 83% as white. The mean age upon entering our dataset is 71. This reflects an 

average taken over the random sample of Medicare beneficiaries in the first year of our 

data (1999) and the beneficiaries who enter our panel in subsequent years, typically when 

                                                 
7 We exclude those receiving low-income subsidies because they are autoenrolled into PDPs. This contrasts with individuals in the 
subsidy ineligible population who must actively select a plan to become insured. For this reason, prior studies of decision making 

quality in the Medicare Part D PDP markets have excluded those receiving low-income subsidies.  
8 This includes addresses that are post-office boxes. 
9 In comparison, there were 40.3 million individuals age 65 and over in the United States in 2010. 
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they turn 65 and become eligible for Medicare benefits. Once an individual enters our 

sample, we follow them through the end of 2013 or until they die. Approximately 69% of 

individuals survive through the end of 2013. For those who die, the mean age at death is 

81.  

We observe where each person lives each year since entering our sample, their annual 

medical expenditures, and if and when they are diagnosed with dementia and other chron-

ic medical conditions. For the subset that choose to enroll in prescription-drug insurance 

plans (PDP) through the Medicare Part D markets (1.2 million people), we also observe 

their annual PDP choice sets, enrollment decisions, prescription drug claims and expendi-

tures on plan premiums, and out-of-pocket costs over the first five years the markets ex-

isted (2006-2010). We use this information together with the cost calculator developed by 

Ketcham, Lucarelli and Powers (2015) to construct a series of metrics that have been 

used in prior literature to assess the quality of older adults’ financial decisions. These 

metrics are described in Section VI.  

A. Clinical Measures of Dementia and Known Risk Factors 

For each person who receives a dementia diagnosis, we observe the initial diagnosis 

date on record in CMS’s Chronic Conditions Data Warehouse file. This file tracks if and 

when each individual is diagnosed with a specific chronic medical condition, based on 

the presence of diagnosis codes on insurance claims. A diagnosis of dementia is based on 

the presence of multiple symptoms of cognitive impairment that significantly impact dai-

ly functioning. Examples include memory loss, impaired judgement, loss of spatial 

awareness, depression, and behavioral changes. The leading cause of dementia is Alz-

heimer’s disease, which accounts for between 60% and 80% of all cases according to the 

Alzheimer’s Association (2017). The next most common cause is a stroke (which causes 

vascular dementia), accounting for about 10% of cases.  

Twenty-three percent of people in our sample are diagnosed with dementia by the end 

of 2013. Figure 1 shows how the fraction of people living with a diagnosis varies with 

age and gender in 2013. Approximately 1% of our sample receives a diagnosis before the 

age of 66. Diagnosis rates increase gradually with age through the mid-seventies, before 
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accelerating in the late seventies and beyond; more than one-third of those living to age 

90 receive a dementia diagnosis at some point.
10

 The diagnosis rate is higher for women 

and this gender gap widens with age. 

FIGURE 1: DEMENTIA BY AGE AND GENDER IN 2013 

 

According to the Alzheimer’s Association (2017) physical risk factors for dementia 

include chronic medical conditions that can reduce the flow of blood and oxygen to the 

brain.
11

 Appendix Table A1 shows that most individuals in our data are diagnosed with at 

least one of these risk factors by the end of the study period: stroke (19%), diabetes 

(32%), congestive heart failure (36%), ischemic heart disease (48%) and hypertension 

(71%).
12

 Factors believed to reduce the risk of dementia include greater education, better 

nutrition and physical health, and a higher degree of social and cognitive engagement. 

Because we are unable to observe these behaviors at the individual level, we proxy for 

them using the average characteristics of people living in each individual’s Census block 

                                                 
10 Within our sample, diagnosis rates are slightly higher for those in Medicare Part D without a low-income subsidy. For comparison, 

Figure A1 reports diagnosis rates separately for men and women conditional on enrollment status in Medicare Part D in 2010. 
11 Genetics are also believed to play a role. 
12 Appendix Table A1 provides summary statistics for additional chronic medical conditions. 
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group. From the US Census Summary files, we use block-group averages of household 

income, per capita income, housing value, gross rent, housing stock age, percent of the 

housing stock that is owner occupied, share of residents over 65, share of residents by 

race, and share of residents by educational attainment.  

B. Using Residential Location Histories  to Measure Long Term Pollution Exposure 

CMS uses information from the US Social Security Administration to track Medicare 

beneficiaries’ residential locations. We obtain ZIP+4 Codes for each individual’s se-

quence of home addresses from 1999 to 2013. ZIP+4 Codes are close to street addresses 

in terms of spatial precision: each code corresponds to a single mail delivery segment, 

such as one floor of an apartment building or one side of a street on a city block. The US 

includes more than 34 million ZIP+4 Codes—about one for every four households.  

Migration patterns for the individuals in our sample are similar to those reported by 

the Census Bureau for individuals aged 65 and older. More than 80% of individuals live 

in the same ZIP+4 (and presumably the same address) throughout our study period. Of 

the 18% of people who move at least once, 10% move between counties and 5% moved 

between states.
13

 We use this information to measure each individual’s cumulative expo-

sure to air pollution, accounting for migration.
14

  

Individuals in our sample live in 9.8 million ZIP+4 Codes between 1999 and 2013. 

We measure annual air pollution at the centroids of each of these areas, focusing on six 

criteria pollutants regulated by the Environmental Protection Agency (EPA). In addition 

to PM2.5, these include particulate matter smaller than 10 microns, ozone, carbon monox-

ide, nitrogen dioxide and sulfur dioxide. Annual data on ambient pollution levels are 

drawn from EPA’s air quality system, consisting of an unbalanced panel of 6,679 moni-

tors in operation between 1999 and 2013.
15

 To approximate annual average exposure in 

                                                 
13 Among the ever-movers, 73% moved once during our study period, 19% moved twice, 5% moved three times and 2% moved four 

or more times. 
14 We are unable to observe seasonal migration by people with more than one residence (e.g. snowbirds) because we only observe the 

residential address on record with the Social Security Administration and CMS for administrative purposes. Fortunately, the scope for 

measurement error appears to be small. Jeffery (2015) estimates that seasonal migrators only account for 2% to 4.1% of the Medicare 
population based on addresses on Medicare claims for individuals’ primary care and emergency room visits.  
15 Appendix Figure A2 maps the locations of monitoring stations for each pollutant. The six criteria pollutants that we study are 

tracked at between 794 and 2,010 monitoring stations from 1999 to 2013. For example, there were 1,797 monitoring stations for 
PM2,5. EPA also regulates lead as a criteria air pollutant but had far fewer monitors (477) during our study period.  
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each ZIP+4 Code, we use the latitude and longitude coordinates of these monitors along 

with the coordinates of the ZIP+4.
16

 Specifically, we use the Great Circle algorithm to 

calculate the surface distance from each ZIP+4 centroid to each monitor.
17

 Then, for each 

centroid-pollutant-year combination, we calculate a weighted average of ambient concen-

trations recorded at all operating monitors with the weights given by the square of the 

inverse distance. Thus, as the distance from a ZIP+4 centroid to a monitor increases, the 

weight assigned to that monitor decreases. Finally, we combine the resulting set of 882 

million local pollution readings (9.8 million centroids by 6 pollutants by 15 years) with 

individuals’ residential ZIP+4 histories to construct cumulative exposure histories for 

each person in our data. 

III.  New Facts About Heterogeneity in Dementia, Migration, and Pollution 

Figure 2 provides initial evidence on the spatial relationship between the prevalence 

of dementia and long-term exposure to PM2.5. This figure plots the 2013 state-level, age-

specific dementia rate against annual average exposures to PM2.5 from 2004 through 

2013. Specifically, the plots are constructed using all of the 75-, 80-, 85- and 90-year olds 

in our data in each state.
18

 At each age, the prevalence of dementia across states varies 

substantially and is strongly, positively correlated with PM2.5. The strength of this corre-

lation increases with age. For example, the trend line for 75-year olds indicates that a 1 

μg/m
3
 increase in annual average PM2.5 exposure between the ages of 64 and 75 is associ-

ated with a 0.47 percentage point increase in a state’s dementia rate. This is equivalent to 

a 6.1% increase relative to the national average among 75-year olds. The same 1 μg/m
3
 

increase in exposure from age 81 to 90 is associated with a 1.38 percentage point increase 

(3.5% of the national average). In the remainder of this article, we leverage our data to 

determine the extent to which the associations in Figure 2 are causal versus a statistical 

artifact of sorting and spatiotemporal heterogeneity.  

                                                 
16 Geographic coordinates of ZIP+4 centroids were purchased from GeoLytics, which created them from the Census Bureau’s 

TIGER/line Shapefiles and US Postal Service records. 
17 In other words, we use the geographic coordinates of both the ZIP+4 Codes and the monitors to calculate the shortest distance be-
tween each pair on the surface of the spherical Earth. 
18 The median state has 1,990 75-year olds, 1,406 80-year olds, 1,080 85-year olds and 635 90-year olds. While their measures of 

decadal PM2.5 exposure include changes due to migration between states, such moves are rare. As noted earlier, only 5% of all people 
in our data ever move between states.  
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FIGURE 2: SPATIAL CORRELATION BETWEEN PM2.5 AND DEMENTIA IN 2013, BY AGE 

 
Note: Each data point represents the fraction of individuals living in a given state who had been diagnosed with dementia before the 

end of 2013. The figures are conditional on age: 75 (top left), 80 (top right), 85 (bottom left) and 90 (top right). 

Our data also show that average exposure to air pollution among the US Medicare 

population declined substantially over time. For example, in 2013 the average person in 

our data was exposed to average PM2.5 concentrations of 9 μg/m
3
, down from 14 μg/m

3
 in 

1999. Figure 3 shows similarly large declines in other air pollutants. Factors that may 

have contributed to these declines include increased regulation of emissions (Shapiro and 

Walker 2016), substitution from coal to shale gas in electricity generation, and migration 

to less-polluted neighborhoods. 
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FIGURE 3: SAMPLE ANNUAL AVERAGE AIR POLLUTION EXPOSURES  

 
Note: The figures report annual average exposure to federally regulated air pollutants among our sample of Medicare beneficiaries in 

each year. 

Migration plays a significant role in explaining these reductions because on average, 

movers go to cleaner areas. The top panel of Figure 4 shows the annual average reduction 

in PM2.5 experienced by movers (solid line) and non-movers (dashed line) in our sample, 

conditional on each year of life from age 66 to age 96. These reductions are calculated by 

subtracting pollution exposure in year t+1 from pollution exposure in year t for each in-

dividual in each year and then averaging across all years in our sample for movers and 

non-movers at each age. Notice that the dashed line has a slope close to zero, implying 

that the reduction in air pollution exposure among non-movers is approximately uncorre-

lated with age. The average non-mover experienced an annual average reduction in PM2.5 
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concentrations of about 0.35 μg/m
3
 at all ages. By contrast, the average 65 year-old mov-

er experienced a reduction of about 0.5 μg/m
3
. The difference between movers and non-

movers narrows with age. One potential explanation for this trend is that the demand for 

cleaner air declines with health shocks, as decreased health induces relocation based on 

access to medical care and family caregivers (rather than local amenities such as air 

quality).  

FIGURE 4: ANNUAL AVERAGE CHANGE IN PM2.5 FOR MOVERS AND NON-MOVERS BY AGE 
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with dementia at the time they moved and those who had not. While splitting the move-

by-age sample reduces statistical precision, movers with dementia tend to experience 

smaller improvements in air quality compared to movers without dementia, at least 

through their mid-80s. This may signal that dementia patients’ location decisions are 

driven more by access to caregivers. Moreover, the fact that, conditional on moving, de-

mentia patients tend to move to more polluted areas highlights the potential for residen-

tial sorting and life-cycle dynamics to confound econometric models.
19

 

IV. Evidence on Dementia from a County-Level Instrumental Variables Design 

In our first econometric specification, we recover the causal impact of PM2.5 exposure 

on cognitive impairment by leveraging a change in the federal Clean Air Act regulations 

in the spirit of Chay and Greenstone (2005). Specifically, we recover a set of 2SLS esti-

mates for the effect of changes in residential PM2.5 exposure on changes in county-level 

dementia rates. We use the EPA’s 2005 designation of counties as being in or out of at-

tainment of a new federal PM2.5 standard to develop an instrument for county level 

changes in PM2.5 between 2004 and 2013. 

A. Modeling the Effect of PM2.5 on County-level Dementia Rates 

We begin by specifying a linear approximation to the relationship between county-

level changes in dementia rates and their residents’ cumulative exposure to PM2.5: 

(1)      Δ𝑦𝑗𝑟 = αΔPM2.5𝑗𝑟 + 𝛽𝑋𝑗𝑟,2004 + 𝛾Δ𝑋𝑗𝑟 + 𝜃Δ𝐶𝑗𝑟 + 𝛿𝑟 + Δ𝜖𝑗𝑟. 

where Δ𝑦𝑗𝑟 denotes the change between 2004 and 2013 in the fraction of older adults liv-

ing with a dementia diagnosis in county j in region r, and ∆𝑃𝑀2.5𝑗𝑟 denotes the decadal 

change in the average resident’s cumulative exposure to fine particulate matter. Based on 

medical literature, one would expect changes in dementia rates to vary across counties as 

                                                 
19 The potential for confounding begins in childhood. Children who grow up in poorer areas are more likely to attend worse perform-
ing schools and receive lower wages as adults (Chetty et al. 2014). They also tend to be exposed to more PM2.5 while their brains are 

developing, which may reduce their health, wealth and human capital as adults (Graff-Zivin and Neidell 2013, Isen, Rossin-Slater and 

Walker 2016).  
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a function of the average resident’s baseline health and other demographics, 𝑋𝑗𝑟,2004. For 

the same reason, changes in dementia rates may vary with changes in the demographic 

characteristics of counties’ average residents, Δ𝑋𝑗𝑟, due to aging, migration and death. 

Changes in the local supply of medical care, Δ𝐶𝑗𝑟, may also affect diagnosis rates. Final-

ly, we include a set of dummy variables, 𝛿𝑟, to allow region-specific trends in county-

level diagnosis rates. 

We define ΔPM2.5𝑗𝑟 as the decadal change in cumulative exposure to fine particulate 

matter, measured as the difference between annual average exposure during 2004-2013 

and pre-decadal exposure, measured by a three-year average from 2001 to 2003.
20

  

(2)       ΔPM2.5𝑗𝑟 = ∑
𝑃𝑀2.5𝑗𝑟,𝑡

10

13

𝑡=04

− ∑
𝑃𝑀2.5𝑗𝑟,𝑠

3

03

𝑠=01

. 

Our coefficient of interest, α, measures how a marginal increase in 10-year annual aver-

age exposure to PM2.5 affects a county’s dementia rate. This effect is measured condi-

tional on the average health, healthcare spending and other demographics of its older 

adult population at the start of the decade; decadal changes in the demographic composi-

tion of its older adult population due to migration and death; changes in access to health 

care; and region indicators used to absorb unobserved variables that may be correlated 

with regional trends in both pollution and dementia. Further, measuring the dependent 

variables in changes allows us to control for any time-invariant unobservables at the 

county level that may lead to persistently higher dementia rates in some counties, e.g. 

pre-period pollution exposure, local climate, or the supply of retirement communities or 

long-term care facilities which may attract migrants who are at higher risk of dementia. 

A concern is that the OLS estimation of (1) could be biased by measurement error in 

ΔPM2.5𝑗𝑟 and/or by correlation between ΔPM2.5𝑗𝑟 and Δ𝜖𝑗𝑟. We address this concern by 

                                                 
20 The 2001-2003 monitoring period is a natural choice for measuring baseline exposure because, as we explain below, it was used to 

determine a county’s attainment status. Our model controls for cumulative lifetime pollution exposure prior to 2001 experienced by 
the average resident of each county via the county fixed effects purged by measuring the dependent variable in differences. As ex-

plained below, we control for compositional changes in counties’ average residents over the decade, including their pre-period pollu-

tion exposures, using several measures of health and other demographics. We cannot directly observe pollution exposure prior to 
1999, the year in which EPA established a national network of air pollution monitors for PM2.5. 
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implementing a 2SLS version of the model that uses an instrument to isolate the exoge-

nous variation in decadal PM2.5 exposure. The first stage is given by: 

(3)       ΔPM2.5𝑗𝑟 = 𝜋𝑍𝑗𝑠,2005 + 𝛽𝑋𝑗𝑟,04 + 𝛾Δ𝑋𝑗𝑟 + 𝜃Δ𝐶𝑗𝑟 + 𝛿𝑟 + Δ𝜖𝑗𝑟 

where the instrumental variable, 𝑍𝑗𝑟,2005, is an indicator equal to 1 if the EPA classified 

county j in region r as being in “nonattainment” for PM2.5 in 2005. Chay and Greenstone 

(2005) first illustrated how the EPA’s county-level nonattainment designations could 

serve as valid instruments for changes in federally-regulated air pollutants. Our approach 

focuses on a hitherto unexploited strengthening of the EPA’s air-quality regulation: its 

initial, 2005 designation of nonattainment counties for PM2.5.
21

  

B. County Nonattainment Designation as an Instrumental Variable for the Change in 

Cumulative Exposure to  PM2.5 

A signature feature of the Clean Air Act Amendments was the establishment of na-

tional ambient air quality standards for maximum-allowable, county-level concentrations 

of particulate matter, ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide and lead. 

Counties that violate these standards are designated as “nonattainment” by the EPA. 

States are then responsible for developing implementation plans to ensure that nonat-

tainment counties reduce concentrations enough to meet the national standards. States 

that fail to bring their counties into attainment risk losing their federal highway funds and 

may face additional federal regulation. These threats spur local regulation, leading to 

relatively large air quality improvements in the regulated counties. 

Among the criteria pollutants, particulate matter is believed to have the most perni-

cious effects on human health at commonly observed concentrations (EPA 2011). During 

the 1970s and 1980s, the EPA regulated total suspended particulates (TSP). Evidence that 

the negative health effects were being driven by the smallest of these particulates led the 

EPA to replace the standard on TSP with new standards on PM10 in 1987 and new stand-

                                                 
21 Because the rationale for using county nonattainment status as an instrument for changes in air pollution has been thoroughly ex-

plained by prior studies, we keep our review of the institutional details brief. Readers seeking additional background on federal regula-
tion of air pollutants should see the discussions in Chay and Greenstone (2005), Walker (2013) and U.S. EPA (2005, 2016). 
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ards on PM2.5 in 1997. Enactment of each new standard was followed by new, county-

level nonattainment designations. By spurring local regulation, nonattainment designa-

tions caused the regulated counties to have relatively large reductions in particulate mat-

ter. Importantly, households, workers, and firms would have been unlikely to have antici-

pated these reductions when making prior location decisions. Following this logic, Chay 

and Greenstone (2005) and Isen, Rossin-Slater, and Walker (2017) use county-level TSP 

attainment status as an instrument for changes in TSP concentrations, while Walker 

(2013) and Bento, Freedman, and Lang (2015) develop instruments based on attainment 

status for PM10. In this paper, we exploit the most recent change in the EPA’s county-

level attainment designations by focusing on the 1997 PM2.5 standard. 

In 1997, the EPA established new monitoring protocols for PM2.5 and set the maxi-

mum-allowable annual average concentration at 15.05 μg/m
3
. By 1999, a national net-

work of more than 900 air-quality monitors was put into place. After several years of liti-

gation failed to overturn this new standard, the EPA made initial, county-level attainment 

designations in 2005 which were based on average monitor readings over the period 2001 

to 2003.
22

 Two hundred and eight counties containing approximately 90 million people 

(30% of the U.S. population) were classified as living in a nonattainment county at that 

time. Remaining counties were classified as “attainment/unclassifiable” because they ei-

ther met the standard or were lacking the necessary information to make a designation 

(US EPA 2005). We will henceforth denote these counties as the attainment group. States 

were directed to take actions to ensure that nonattainment counties met the 15.05 μg/m
3
 

standard by 2010.
23

  

Figure 5 provides evidence that PM2.5 concentrations near air-quality monitors 

changed following the 2005 designations. The solid and dashed lines show the trend in 

PM2.5 readings, averaged over all air-quality monitors in each county in each year by their 

                                                 
22 Nonattainment designations at a given monitor were based on a 3-year average from 2001-2003 of annual averages over quarterly 

averages over daily averages over hourly average monitor readings. Nonattainment counties were classified as partly or wholly nonat-
tainment. EPA’s air quality system includes annual data on monitors in 132 of the 208 nonattainment counties. Counties need not have 

air quality monitors to be classified as nonattainment. Counties without monitors were classified as nonattainment if they were be-

lieved to contribute to violations in nearby counties with monitors (Federal Register 2005). 
23 The regulation allowed for potential extensions of up to 5 years at the discretion of the EPA administrator. Guidelines for state 

implementation plans were released in 2007 and new source review standards were released in 2008. EPA also indirectly regulated 

particulate matter through the Clean Air Interstate Rule, enacted in March 2005 to mitigate interstate transport of PM2.5 precursors, and 
through new regulations on emissions from mobile sources. Appendix Figure A3 provides a timeline of major regulatory changes. 
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respective attainment status.
24

 Prior to 2005, PM2.5 concentrations were declining at a 

similar rate in both attainment and nonattainment counties. The dotted line shows that the 

difference between the two trend lines was fairly stable from 1999 to 2005. After the 

nonattainment designations were made, concentrations of PM2.5 declined at a faster rate in 

nonattainment counties. The difference between the average monitor readings in nonat-

tainment and attainment counties dropped by more than half between 2005 to 2013. Fig-

ure 5 mirrors Chay and Greenstone’s (2005, Figure 2) analysis of the 1975 attainment 

designations for TSP. Like them, we use an indicator for a county’s attainment status as 

an instrument for the change in concentrations of the regulated air pollutant observed in 

the county over the following decade.
25

  

Figure 6 shows how county-level attainment status varies with the PM2.5 exposure of 

the average individual in our Medicare sample over the period 2001 to 2003. To construct 

this figure, we first calculate the inverse-distance-weighted annual measures of residen-

tial PM2.5 exposure for each individual in our sample. We then average over all individu-

als in each county-year and group counties into 0.3 μg/m
3
 bins based on average expo-

sure in 2001-2003. The left panel of Figure 6 shows the fraction of counties in each bin 

that the EPA designated as being in nonattainment and is constructed using data on 644 

counties with air quality monitors in operation from 2001 to 2003.
26

 No county with con-

centrations below 12.31 μg/m
3
 was designated as nonattainment; every county with con-

centrations above 15.16 μg/m
3 

was designated as nonattainment; and as a county’s aver-

age concentrations increased from 12.31 to 15.16 μg/m
3
, so too did its probability of re-

ceiving a nonattainment designation. The right panel of Figure 6 shows the CDFs of av-

erage exposure for people in attainment and nonattainment counties with and without air 

quality monitors.  

                                                 
24 To construct the figure we started by extracting records from EPA’s air quality system for all monitors that satisfied EPA’s monitor-
ing standards for regulatory decisions, had at least 10 reading per year, and did not exclude events such as forest fires. This yielded an 

unbalanced panel of between 880 and 1,148 monitors each year. Appendix Figure A4 shows that the figure looks virtually identical if 

we construct it from a balanced panel of 393 monitors that were in continuous operation from 1999 through 2013. 
25 Chay and Greenstone’s preferred version of this instrument was an indicator for mid-decade attainment status. This was partly be-

cause, in their context, using mid-decade attainment status limited the scope for unobserved spatial sorting by households to compli-

cate interpretation of results. By contrast, we are able to observe and control for migration at the individual level, as well as run ro-
bustness checks that limit the estimation sample to non-movers. 
26 Figure 5 includes an additional 16 counties that we drop because county populations are below the federal thresholds for disclosing 

information on variables that enter our model as covariates. These include Census block group demographics and Medicare Advantage 
enrollment shares.   
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FIGURE 5: AIR POLLUTION BY COUNTY ATTAINMENT STATUS IN 2005 

 
Note: The figure reports annual average daily concentrations of particulates smaller than 2.5 microns (PM2.5). Measurements are taken 

from air quality monitors in 660 counties designated in 2005 as attainment (528) or nonattainment (132) with the federal standard. 

Each data point in the nonattainment line is a simple average over monitors in nonattainment counties. The attainment county line is 
defined similarly. The bottom line shows the difference between the nonattainment and attainment lines. In 2010 the Census Bureau 

recorded 41% of the US population age 65 and over living in the 528 attainment counties and 27% living in the 132 nonattainment 

counties. Corresponding general population shares were 43% (attainment) and 28% (nonattainment).  

FIGURE 6: COUNTY ATTAINMENT STATUS BY 2001-2003 PM2.5 EXPOSURE 

 
Note: The left figure displays the fraction of counties that EPA designated as nonattainment in 2005 within 0.3 microgram per cubic 

meter bins for average county exposure. Average county exposures are calculated using our inverse distance measure for the people 

we observe living in each county between 2001 and 2003. EPA used this 3-year interval to define 2005 nonattainment status. The 
points denote bin midpoints. The left figure is constructed for 646 counties with air quality monitors. The right figure is constructed 

for all 3,062 counties in our data. It displays CDFs of the average exposure for people we observe living in attainment and nonattain-

ment counties with and without air quality monitors.  
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Figure 6 highlights three important features of our data. First, our inverse distance 

measures of older adults’ residential exposures to PM2.5 are consistent with EPA’s at-

tainment designations. Virtually no attainment counties have average exposures over the 

regulatory threshold. This is equally true for counties with and without air quality moni-

tors. Second, we can use overlap in the exposure ranges for attainment and nonattainment 

to construct a “matching” design in which a subset of counties with similar baseline ex-

posures faced different regulatory intensity. Among the subset of counties with air quality 

monitors, there are 108 nonattainment and 250 attainment counties with average 2001-

2003 exposures between 12 and 15.5 μg/m
3
. Most of the nonattainment counties in this 

group had average exposures below the regulatory threshold but were classified as nonat-

tainment because (1) they contained pollution “hot spots” that violated the standard or (2) 

they were believed by EPA to contribute to violations in neighboring counties. Focusing 

on this subset allows us to relax the exogeneity assumption on the instrument outside a 

narrow range for baseline exposure: 𝐸[Δ𝜖𝑗𝑟|𝑍𝑗𝑠,2005] ∀𝑗: 12 ≤ ∑
𝑃𝑀2.5𝑗𝑟,𝑠

3

03
𝑠=01 ≤ 15.5. Final-

ly, we can leverage the fact that attainment status was based on the dirtiest monitor in 

each county to construct a sample consisting of attainment counties just below the regula-

tory threshold and nonattainment counties just above the threshold, allowing us to relax 

the exogeneity condition outside a window around the threshold. Following Chay and 

Greenstone (2005) we treat these matching and subsample designs as robustness checks 

on our main results.   

C. Estimates for the Effect of PM2.5 Exposure on Dementia Diagnoses 

Table 1 summarizes our estimates for the effect of a 1 μg/m
3
 increase in 10-year an-

nual average residential PM2.5 exposure on county-level dementia rates. The first four 

columns report results for our full sample of 3,022 counties.
27

 Column (1) is the simplest 

specification. The explanatory variables are ΔPM2.5 and covariates describing the health 

of the county’s older adult population in 2004: Medicare Part A and B expenditures per 

                                                 
27 There are 3,142 counties and county equivalents in the United States. The 120 that are excluded from our analysis are generally the 

least populous rural counties. They are missing because Census block group variables or Medicare Advantage enrollment information 
are suppressed to avoid identifying individuals or because our sample does not include multiple people living in the county every year.   
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capita and diagnosis rates for chronic heart failure, ischemic heart disease, diabetes, hy-

pertension, and stroke. We calculate county means for these and other variables using the 

micro data (an unbalanced panel of 7.4 million people; 3.3 to 3.6 million people per 

year). Column (2) adds covariates describing changes between 2004 and 2013 in the de-

mographic composition of county populations and local access to health care. These in-

clude the change in mean age interacted with indicators for 1-year bins for mean age in 

2004; changes in hospital beds per capita and medical doctors per capita; changes in the 

fraction of seniors enrolled in Medicare Advantage plans; changes in Medicare expendi-

tures per capita and morbidity rates; changes in percent female, black, Asian and Hispan-

ic; and changes in mean Census block group variables describing the residents’ neighbor-

hood household income, income per capita, year the housing stock was built, mean and 

average house value, gross rent, percent owner occupied, and fractions of people in four 

race bins and seven educational attainment bins. Finally, columns (3) and (4) add indica-

tors for geographic regions to complete the econometric specification in equation (1). The 

indicators denote nine Census divisions in column (3) and states in column (4). All re-

gressions are weighted by county sample sizes to make the coefficients nationally repre-

sentative.
28

 

As a baseline for comparison, panel A reports OLS estimates of the first differenced 

model. The coefficients are positive and mostly statistically distinguishable from zero. 

The point estimates from our full specifications in columns (3)-(4) imply that a 1 μg/m
3
 

increase in decadal exposure to PM2.5 increases a county’s dementia rate by six to eight 

hundredths of a percentage point.  

Panel B shows that county nonattainment status is a strong instrument for ΔPM2.5. It 

causes the point estimates to increase in magnitude and stabilize across specifications. As 

we incrementally add covariates, moving from column (1) to column (2) to column (3), 

our point estimates decrease but remain statistically significant. The model in column (3) 

mirrors the main specification from Chay and Greenstone (2005) in that it is identified by 

                                                 
28 We weight each county by the minimum of the number of people we observe living in the county in 2004 and 2013. Weighting by 

the county sample size also improves statistical precision by reducing the weight placed on small, rural counties for which changes in 
dementia rates are less precisely estimated. 
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variation in air quality changes between attainment and nonattainment counties in the 

same Census division, conditional on covariates describing temporal changes in county 

populations. Column (4) shows that our estimate hardly changes if we replace the Census 

division dummies with state dummies that force the identification to come from variation 

between attainment and nonattainment counties in the same state.  

TABLE 1—FIRST DIFFERENCE ESTIMATES FOR THE EFFECT OF PM2.5 ON DEMENTIA 

 
Note: The dependent variable is the change between 2013 and 2004 in the share of living people in a county diagnosed with dementia. 

This difference is regressed on ΔPM2.5, defined by the difference between annual average exposure from 2004 to 2013 and annual 

average exposure from 2001 to 2003. Panel A summarizes OLS regressions. Panel B summarizes 2SLS regressions that instrument for 

ΔPM2.5 with an indicator for nonattainment designation in 2005. Col (1) controls for average heath among people we observe living in 

the county in 2004. Col (2) extends the model from Col (1) to include a set of covariates describing changes in county populations 

between 2004 and 2013. Col (3) extends the model from Col (2) to include dummies for the nine Census divisions. Col (4) replaces 

the Census division dummies in Col (3) with state dummies. Cols (5)-(6) repeat the regressions from Cols (3)-(4) for the subset of 
counties that had air quality monitors from 2001-2003, the period used to determine nonattainment status. Asterisks indicate statistical 

significant at the 10%, 5%, and 1% levels based on robust standard errors. See the text for additional details. 

 

The last two columns of Table 1 report results from repeating estimation of the mod-

els in columns (3)-(4), limiting the sample to 644 counties that had air quality monitors in 

place throughout the 2001-2003 period EPA used as the basis for making nonattainment 

designations. These counties tend to be larger as the EPA tends to place monitors in more 

populous places. In 2013, they contained 69% of the 3.55 million people in our data. Fo-

cusing on this subsample has the twin advantages of improving the precision of our esti-

 

(1) (2) (3) (4) (5) (6)

0.140*** 0.054* 0.081** 0.064 0.101* 0.09

(0.038) (0.032) (0.035) (0.046) (0.054) (0.069)

R2 0.108 0.509 0.53 0.557 0.694 0.736

0.647*** 0.488*** 0.428*** 0.400*** 0.489*** 0.440** 

(0.081) (0.076) (0.085) (0.131) (0.124) (0.182)

F statistic on attainment IV 940 693 620 429 150 98

county change covariates x x x x x

Census division dummies x x

state dummies x  x

monitored county sample x x

mean dementia rate (2013) 13.2 13.2 13.2 13.2 13.4 13.4

number of counties 3,022 3,022 3,022 3,022 644 644

A. First Difference - OLS 

B. First Difference - 2SLS

ΔPM2.5 (1 ug/m3)

ΔPM2.5 (1 ug/m3)
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mates for county dementia rates and reducing the scope for measurement error in ΔPM2.5. 

As can be seen in Table 1, these precautions leave the results virtually unchanged.  

TABLE 2—ROBUSTNESS OF 2SLS ESTIMATES FOR THE EFFECT OF PM2.5 ON DEMENTIA 

 
Note: The dependent variable is the change between 2013 and 2004 in the share of living people in a county diagnosed with dementia. 

This difference is regressed on ΔPM2.5, defined by the difference between annual average exposure from 2004 to 2013 and annual 

average exposure from 2001 to 2003. The instrument for ΔPM2.5 is an indicator for nonattainment designation in 2005. Col (1) is the 

same as Col (5) of Table 1. Col (2) adds data on changes in other air pollutants: PM10, ozone, carbon monoxide, nitrogen dioxide, and 
sulfur dioxide. Col (3) through Col (7) repeat the specification from Col (1) for subsets of counties. Col (3) uses counties that moni-

tored ΔPM2.5 continuously from 2001-2013. Col (4) uses a “matching” sample of counties with average 2001-2003 PM2.5 concentra-

tions between 12 and 15.5 ug/m3. Col (5) uses a “regression discontinuity” sample of attainment counties with 2001-2003 PM2.5 con-

centrations between 11.55 and 12.05 ug/m3 and nonattainment counties with concentrations between 12.05 and 18.55 ug/m3. Col (6) is 

an unweighted regression for counties with at least 2,000 individuals. Col (7) uses a balanced panel of people living in the same coun-
ty from 2001 through 2013, using counties with at least 2,000 people.  Asterisks indicate statistical significant at the 10%, 5%, and 1% 

levels based on robust standard errors. The text gives additional details. 

 

The 2SLS estimates in columns (3)-(6) collectively suggest that a 1 μg/m
3
 decrease in 

exposure to PM2.5 between 2004 and 2013 (an 8% decrease relative to the sample-

weighted mean) caused county dementia rates to decrease by about 0.4 percentage points 

(a 3% decrease relative to the sample-weighted mean). To put this finding in context, the 

people we observe living in nonattainment counties experienced a reduction in decadal 

average exposure to PM2.5 of 3.09 μg/m
3
 compared to a reduction of 1.64 μg/m

3
 for peo-

ple in attainment counties. A back-of-envelope calculation in which we multiply 0.4 by 

the difference in ΔPM2.5 experienced by people living in nonattainment and attainment 

counties implies that EPA’s nonattainment designations reduced dementia rates in those 

counties by about six tenths of a percentage point (or 4.5%) on average.  

 

(1) (2) (3) (4) (5) (6) (7)

0.489*** 0.750*** 0.371** 1.019** 0.784** 0.649** 0.661*

(0.124) (0.199) (0.172) (0.475) (0.365) (0.299) (0.333)

F statistic on attainment IV 150 79 71 41 68 33 52

other criteria pollutants x

balanced monitor sample x

matching sample x

regression discontinuity sample x

large county sample x x

balanced person sample x

mean dementia rate (2013) 13.4 13.3 13.3 13.7 13.5 13.5 21.3

number of counties 644 644 433 358 298 292 125

number of people in 2013 (million) 2.44 2.44 1.82 1.45 1.02 2.09 0.53

ΔPM2.5 (1 ug/m3)
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Table 2 summarizes the robustness of our 2SLS estimates to controlling for changes 

in other pollutants and narrowing our focus to specialized subsamples. For convenience, 

column (1) replicates the coefficients that we obtain from estimating the model with Cen-

sus division dummies on the subset of monitored counties (Table 1, col. 5). Column (2) 

shows that adding changes in other criteria pollutants as covariates (PM10, ozone, carbon 

monoxide, sulfur dioxide and nitrogen dioxide) causes the PM2.5 coefficient to increase, 

suggesting that it drives the effect on dementia. In comparison, coefficients on the other 

pollutants are negative and/or statistically indistinguishable from zero. Column (3) shows 

results from estimating the same model as (1) after dropping 211 counties that were ever 

missing monitor data between 2004 and 2013.
29

 Column (4) reports results for the match-

ing sample of 358 counties with pre-decadal exposures between 12 and 15.5 μg/m
3
. Col-

umn (5) reports results for the regression discontinuity sample of attainment counties just 

below the regulatory threshold (11.55 to 15.05 μg/m
3
) and nonattainment counties just 

above the threshold (15.05 to 18.55 μg/m
3
).

30
 Column (5) reports results for an un-

weighted regression that ignores differences in county population sizes. As an alternative 

to weighting, we limit the sample to the 292 monitored counties that had at least 2,000 

people in 2004 and 2013. In summary, as we compare column (1) to columns (3)-(6) it is 

unsurprising to find that reducing the sample size and changing the sample geography 

reduces the stability of point estimates and yields wider confidence intervals. Yet, the co-

efficients are remarkably robust in indicating that higher decadal exposures to PM2.5 

cause dementia rates to increase.       

Finally, column (7) limits the sample to a balanced panel of individuals who we ob-

serve continuously living in the same county from 2001 through 2013. Focusing on this 

group avoids potential concerns about ecological fallacy and aggregation bias. A draw-

back is that it reduces the number of individuals in our sample substantially, leaving far 

fewer counties where we can estimate dementia rates precisely. Dementia rates are espe-

                                                 
29 Of the 211 counties that we drop, 18 are nonattainment. There are several reasons why a county may be missing one or more years 

of monitor data. Some monitors are discontinued or temporarily inactivated; some are dropped because they report fewer than 10 

readings per year, and some are dropped because EPA chose to exclude readings triggered by extreme events such as forest fires when 
calculating the annual averages used in making nonattainment designations. 
30 If we look within a narrower 5 μg/m3 window from 12.55 to 17.55, our sample declines to 210 counties, yielding a moderately larg-

er point estimate and standard error: 1.055** (0.481). 
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cially low for this group in 2004 because few people survive for 10 years following a di-

agnosis. We address this limitation by again limiting the sample to counties where we 

observe at least 2,000 people per year. This yields a balanced panel of 0.53 million peo-

ple continuously living in 125 counties. Only 3% had received a dementia diagnosis by 

2004. This increased to 21.3% in 2013, consistent with the increase in their mean age 

from 74 to 83. Remarkably, the point estimate continues to indicate that a 1 μg/m
3
 in-

crease in decadal exposure to PM2.5 increases the 2013 dementia rate by about 3%. To 

investigate the mechanisms that drive this effect, we now utilize our micro-data to devel-

op an administrative records design. 

V. Evidence on Dementia from a Micro-Level Administrative Data Design 

This section draws on the full scope and scale of our micro data to estimate how a 1 

μg/m
3
 increase in decadal exposure to PM2.5 affects an individual’s probability of being 

diagnosed with dementia. We use all of the available information on each person’s resi-

dential address history, pollution exposures, medical diagnoses and demographics. The 

econometric identification strategy complements the preceding county-level analysis by 

focusing on variation in individual PM2.5 exposures stemming from residential migration 

and local (within-county) heterogeneity in ambient PM2.5 concentrations.   

A. A Probabilistic Model of Individual Dementia Diagnoses 

Let 𝐷𝑖𝑡, be an indicator for whether person i was diagnosed with dementia by the end 

of year t. To mitigate potential confounding from residential sorting by dementia patients, 

we focus on the subset of individuals who were in our Medicare sample in year t-9, who 

had not received a dementia diagnosis at that point, and who were still alive in year t. 

Then we define an indicator for whether person i was newly diagnosed with dementia 

during the decade: 𝑦𝑖𝑡 = 𝐷𝑖𝑡 − 𝐷𝑖𝑡−9, where 𝑦𝑖𝑡 ∈ {0,1} and 𝐷𝑖𝑡−9 = 0 ∀ 𝑖. This indicator 

is the dependent variable in our linear probability model, 

(4)        𝑦𝑖𝑏𝑗𝑡 = α𝑡 (
1

10
∑ 𝑃𝑀2.5𝑖𝑠

𝑡
𝑠=𝑡−9 ) + β𝑡 (

1

10
∑ 𝐶𝑃𝑖𝑠

𝑡
𝑠=𝑡−9 ) + 𝛾𝑡𝑋𝑖𝑡 + 𝜃𝑡𝑊𝑏 + 𝜂𝑗𝑡 + 𝜖𝑖𝑏𝑡. 
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Additional subscripts denote the Census block group (b) and county (j) where the person 

resided in year t. As in our county level models, the coefficient of interest, α, measures 

the effect of 10-year annual average residential exposure to PM2.5. This metric is derived 

from each person’s residential location history so it incorporates changes in pollution ex-

perienced as a result of moving. 𝐶𝑃𝑖𝑠 is a similarly defined vector of average decadal ex-

posures to other federally regulated air pollutants.  

Dummy variables for counties, 𝜂𝑗𝑡, are used to absorb the effects of environmental 

factors that might be spatially correlated with pollution and cognition, such as extreme 

temperatures, the presence of lead pipes, and chemical exposures via hazardous waste 

sites. In particular, extreme temperatures are known to cause morbidities that serve as 

risk factors for dementia (Deschenes 2014). Equally important, county dummies will ab-

sorb regional variation in access to medical care and doctors’ diagnostic procedures that 

could lead to spatial variation in dementia diagnosis rates. Furthermore, the dummies will 

control for any pre-period sorting across counties on the basis of medical conditions that 

may serve as risk factors for dementia (Finkelstein, Gentzkow and Williams 2016).  

To explain within-county variation in the probability of a dementia diagnosis we in-

clude covariates for all of the individual demographic information (𝑋𝑖𝑡) present in Medi-

care administrative records. This includes indicators for race, indicators for age-by-

gender bins from age 65 through age 99, and several measures of the individual’s health 

in year t-9.
31

 We measure baseline health using the individual’s gross expenditures on 

health care services covered by Medicare parts A and B, and diagnostic indicators for hy-

pertension, diabetes, congestive heart failure, ischemic heart disease and stroke.
32

 Since 

air pollution is a risk factor for these morbidities, controlling for them will help to absorb 

the manifested effects of individual differences in pollution exposure prior to our study 

period. To control for socioeconomic status and within-county heterogeneity in non-

airborne pollution we include the same Census variables from our county models describ-

                                                 
31 All centenarians are grouped into two gender-specific bins because their relatively small numbers prevent us from precisely estimat-
ing year-specific coefficients. Our findings on air pollution are unaffected by adding year-specific bins beyond age 100. 
32 Medicare Parts A and B cover virtually all medical services aside from prescription drugs. This includes doctors’ services, preven-

tive care, durable medical equipment, hospital out-patient services, laboratory tests, x-rays, hospital in-patient services, nursing facili-
ties, and hospice care. 
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ing education, income, value of the housing stock and other measures of the demographic 

composition (𝑊𝑏) of the individual’s year t Census block group. We also multiply an in-

dicator for whether the person ever changed residences over the decade with the covari-

ates for their race, age, gender, and block group demographics. This is the first of multi-

ple strategies we employ to avoid reverse causality that could be introduced, in principle, 

by movers with dementia moving to areas with higher PM2.5 concentrations (Figure 4). 

B. Main Results 

We estimate separate regressions for each year from 2008 through 2013.
33

 While this 

approach allows all model coefficients to evolve flexibly over time, we generally find 

temporal variation in model coefficients to be economically unimportant. Table 3 sum-

marizes our findings, using 2010 as an example. Column (1) reports results from a uni-

variate OLS regression of 𝑦𝑖𝑏𝑗𝑡 on decadal PM2.5 exposure for people who had not re-

ceived a dementia diagnosis by the end of 2001. The estimate reveals that a 1 microgram 

per cubic meter increase in decadal exposure is associated with a 0.32 percentage point 

increase in the rate of dementia, which is equivalent to a 1.7% increase from the sample 

mean.
34

 The coefficient declines when we add covariates for baseline medical expendi-

tures and morbidities, along with individual and neighborhood demographics in column 

(2). After controlling for these variables, the point estimate is unaffected by adding 

dummy variables for states in column (3) and counties in column (4). 

 

 

 

 

 

                                                 
33 This is the first six years over which it is possible to consistently observe decadal exposure to fine particulates across the United 

States because, as noted earlier, EPA’s national monitoring network was established in 1999. 
34 The coefficient increases to 0.45*** if we include people who had received a dementia diagnosis by 2001. The increase could re-
flect pre-period sorting by dementia patients and/or the effects of pre-decadal pollution exposure. 
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TABLE 3—DECADAL EXPOSURE TO AIR POLLUTION AND DEMENTIA IN 2010 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia before the end of 2010 and 0 otherwise. Pollu-

tion exposures are based on 10-year annual averages corresponding to the individual’s residential address history. The estimation 

sample includes all individuals alive in 2010 for whom we continuously observe pollution exposure at their home address between 
2001 and 2010. Col (1) is a univariate regression. Col (2) adds covariates for baseline health in 2001, individual demographics and 

mean demographics for the person’s 2010 Census block group. Col (3) adds state dummies and Col (4) replaces them with county 

dummies. Col (5) drops everyone who moved between 2001 and 2010. Finally, Cols (6)-(8) repeat the specifications from cols (3)-(6) 
after adding other criteria pollutants. To facilitate comparability, all pollutants are scaled to have the same mean as PM2.5 (11.82) so 

that coefficients can be interpreted as the effect of an 8.5% increase in annual average exposure relative to the mean. Robust standard 

errors are clustered by Census block group. The text gives additional details. 

 

Column (4) is our preferred model. With the inclusion of county dummies, the coeffi-

 (1) (2) (3) (4) (5) (6) (7) (8)

0.32*** 0.20*** 0.19*** 0.20*** 0.20*** 0.25*** 0.26*** 0.15**

(0.02) (0.02) (0.02) (0.05) (0.06) (0.03) (0.05) (0.07)

-0.01 0.04 0.07

(0.02) (0.04) (0.05)

-0.04 0.14* 0.12

(0.05) (0.08) (0.11)

-0.02 0.00 0.00

(0.02) (0.03) (0.03)

-0.01 -0.06** 0.05*

(0.01) (0.02) (0.03)

-0.02** -0.04** -0.06***

(0.01) (0.02) (0.02)

1.11*** 1.08*** 1.06*** 1.15*** 1.08*** 1.06*** 1.15***

(0.06) (0.06) (0.06) (0.07) (0.06) (0.06) (0.07)

2.18*** 2.10*** 2.06*** 2.24*** 2.10*** 2.06*** 2.24***

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

3.18*** 3.16*** 3.12*** 3.20*** 3.17*** 3.12*** 3.20***

(0.13) (0.13) (0.13) (0.14) (0.13) (0.13) (0.14)

3.57*** 3.56*** 3.53*** 3.24*** 3.56*** 3.53*** 3.24***

(0.09) (0.09) (0.09) (0.10) (0.09) (0.09) (0.10)

8.86*** 8.82*** 8.81*** 8.64*** 8.82*** 8.80*** 8.64***

(0.17) (0.17) (0.17) (0.19) (0.17) (0.17) (0.19)

individual covariates x x x x x x x

block group covariates x x x x x x x

state dummies x x

county dummies x x x x

excludes ever movers    x  x

R2
0.0003 0.1130 0.1139 0.1172 0.0757 0.1139 0.1172 0.0757

Number of individuals 1,739,385 1,739,385 1,739,385 1,739,385 1,400,712 1,739,385 1,739,385 1,400,712

Mean of dependent variable 19.5 19.5 19.5 19.5 16.5 19.5 19.5 16.5

chronic heart failure by 2001

ischemic heart disease by 2001

diabetes by 2001

stroke by 2001

hypertension by 2001

nitrogen dioxide 

PM2.5 (1 μg/m3)

PM10

ozone 

carbon monoxide 

sulfur dioxide
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cient on PM2.5 is identified by heterogeneity in decadal air pollution exposure experi-

enced by people who lived in similar neighborhoods in the same county in 2010, holding 

constant their health status at the start of the decade, their individual demographics, and 

their migrant status. This identification strategy requires the full scope and scale of our 

data; the county dummy variables alone explain 89% of the individual variation in deca-

dal PM2.5 exposure. Our sample for 2010 includes just over 600 people per county. The 

effect of PM2.5 on dementia diagnoses is identified by two sources of variation. Among 

never-movers, PM2.5 exposures vary based on where they lived within the county.
35

 

Among ever-movers, PM2.5 exposures vary based on their migration-induced changes in 

exposure together with the variation in exposure within their 2010 county of residence.  

The PM2.5 coefficient in column (4) implies that a 1 microgram per cubic meter in-

crease in 10-year annual average PM2.5 increases the probability of a dementia diagnosis 

by 0.20 percentage points, or about 1% relative to the sample mean. This effect is sub-

stantial. In comparison, a seminal cohort study by Pope et al.’s (2002) found the same 

increase in PM2.5 to be associated with a 0.4% increase in all-cause mortality among 

adults over 30. More recently, Chen et al. (2013) found a 0.4% reduction in life expec-

tancy at birth from an additional 10 microgram per cubic meter increase in total suspend-

ed particulates near China’s Huai river.  

While our migration dummies control for possible confounding caused by dementia 

patients moving to more polluted areas, a remaining concern is that people who are more 

likely to be diagnosed with dementia in the future may tend to move to polluted areas 

prior to their diagnoses. To investigate whether this could be driving our results, column 

(5) estimates the same model as column (4) after excluding everyone who ever moved 

during the decade, forcing the identification to come from within-county variation in ex-

posure. The resulting point estimate is virtually the same as our main specification, sug-

gesting that our main results do not suffer from reverse causality.
36

 

                                                 
35 Appendix Figure A5 provides an illustration of this variation for Maricopa County, Arizona—the fourth most populous county in 

the United States with more than four million residents as of 2015. 
36 For readers interested in comparing the relative effects of air pollutants with coefficients on demographics characteristics, Appendix 

Table A3 reports coefficients for the non-mover sample in columns (5) and (8) of Table 3. Conditioning on the age and gender effects 

already seen in Figure 1, we note that diagnosis rates tend to be higher for blacks (+3%), Asians (+1%) and Hispanics (+2%) relative 
to whites. Meanwhile, diagnosis rates decline by about 0.2% for every $10,000 of additional median household income and tend to be 
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The coefficients on baseline morbidities allow us to interpret the PM2.5 coefficients in 

terms of relative risks. For example, the probability of a dementia diagnosis is approxi-

mately 1% higher for people diagnosed with hypertension at the beginning of the decade. 

This increase in risk is equivalent to a 10-year increase in annual average PM2.5 exposure 

of 5 to 6 μg/m
3
. A change of this size would have been experienced by someone moving 

from a relatively clean city in coastal California (e.g. Santa Cruz) to a relatively dirty city 

(e.g. Los Angeles). Someone moving from one of the cleanest cities in the United States 

(Honolulu) to one of the dirtiest (Fresno) would have experienced an increase in annual 

average exposure of 12 μg/m
3
, increasing their probability of a dementia diagnosis by a 

similar amount as being diagnosed with ischemic heart disease.    

C. Robustness and Mechanisms 

Since a large share of PM2.5 emissions are generated by the same sources of other 

federally regulated air pollutants (e.g. power plants, manufacturing plants, automobiles) 

the PM2.5 coefficients in columns (3)-(5) of Table 3 could be reflecting the effects of 

those pollutants. To examine whether this is the case, the last three columns of Table 3 

report results for the same models as columns (3)-(5) after adding other pollutants as co-

variates. To facilitate comparisons, all pollutants are normalized to have the same mean 

decadal exposure as PM2.5 (11.82). Their coefficients measure an 8.5% increase relative 

to the sample average. Results suggest that the effect of air pollution on dementia is driv-

en by fine particulates. Column (6) shows that when we include state dummies the coef-

ficients on other pollutants are an order of magnitude smaller than the PM2.5 coefficient 

and wrong signed. The county dummies that we add to the model in columns (7) and (8) 

absorb much of the conditional variation in individual pollutants, making it harder to dis-

tinguish their effects. Nevertheless, the relative magnitudes of the point estimates contin-

ue to point toward PM2.5 as the main channel through which pollution affects dementia.  

 Figure 7 illustrates that our point estimates for the effect of decadal PM2.5 exposure 

are fairly stable from 2008 through 2013, regardless of whether we control for other crite-

                                                                                                                                                 
lower in neighborhoods with higher educational attainment.  For example, a 10% increase in the fraction of block group residents with 
graduate degrees (relative to less than 8th grade education) is associated with a 0.6% reduction in the dementia diagnosis probability. 
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ria pollutants. The figure graphs point estimates and their 95% confidence intervals for 

annual models with county dummies. The left panel excludes other criteria pollutants and 

the right panel includes them, corresponding to columns (4) and (7) of Table 3.  

FIGURE 7: THE EFFECT OF DECADAL PM2.5 EXPOSURE ON DEMENTIA, 2008-2013 

 

Note: The figures report point estimates and 95% confidence intervals for the PM2.5 coefficient from annual regressions. Point esti-

mates give the percentage point increase in the probability of a dementia diagnosis in the indicated year from a 1 microgram per meter 

increase in 10-year annual average exposure to fine particulates. The figure on the left is based on the specification from col (4) of 
Table 3. The figure on the right is based on col (7) of Table 3. See the footnote to Table 3 and the text for additional details. 

 

Figure 8 analyzes how the effect of air pollution on dementia varies with the duration 

of exposure. In the upper left panel, the coefficients and confidence intervals are calculat-

ed by estimating the model in (5) for all of the individuals in our data as we incrementally 

increase the duration of exposure, T, from 2 to 15 years. Because the terminal year of ex-

posure varies over individuals depending on when they enter our sample (s) and when 

they die, we add dummies for terminal year, 𝜋𝑖𝑡, to control for trends in diagnostic meth-

ods. 

(5)        𝑦𝑖𝑏𝑗𝑡 = α𝑡 (
1

𝑇
∑ 𝑃𝑀2.5𝑖𝑠

𝑇
𝑠=1 ) + β𝑡 (

1

𝑇
∑ 𝐶𝑃𝑖𝑠

𝑇
𝑠=1 ) + 𝛾𝑡𝑋𝑖𝑡 + 𝜃𝑡𝑊𝑏 + 𝜂𝑗𝑡 + 𝜋𝑖𝑡 + 𝜖𝑖𝑏𝑡. 

The effect of two-year exposure is precisely estimated and close to zero. It increases 

gradually over time. The confidence intervals widen as the duration of exposure increases 

because our sample size declines.  
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FIGURE 8: VARIATION IN THE EFFECT OF PM2.5 ON DEMENTIA BY EXPOSURE DURATION 

 

Note: The figures report point estimates and 95% confidence intervals for the PM2.5 coefficient from estimating equation (5) as T 

increases from 2 to 15. Each data point represents the percentage point increase in the probability of a dementia diagnosis (vertical 
axis) caused by a 1 microgram per cubic meter increase in hourly average residential exposure to PM2.5 over a T-year period (horizon-

tal axis) conditional on survival. The top left panel uses all individuals. Each of the other three panels changes one aspect of the esti-

mation. The top right panel replaces the indicator for whether an individual had a stroke as of year 1 with an indicator for whether they 
had a stroke as of year T. The lower left panel limits the sample to 644 counties with air pollution monitors in 2005. The bottom right 

panel limits the sample to the initial cross-section of Medicare beneficiaries in 1999. Standard errors are clustered at the Census block 

group level. See the text for additional details. 

 

To further explore the channel through which pollution affects dementia, we repeat 

estimation of the model in (5) after replacing the dummy for whether person i had a 

stroke by year s with a dummy for whether they had a stroke by the end of year T. This 

dummy will absorb the effect of air pollution on vascular dementia—the second most 

common form of dementia behind Alzheimer’s disease. The upper left panel of Figure 8 

shows that this hardly changes the cumulative exposure figure, allowing us to rule out 

strokes as the primary channel. The lower left panel of Figure 8 shows that our results are 

robust when we address potential concerns about measurement error by restricting the 

estimation sample to people living in the subset of 644 counties that had air pollution 

monitors in 2005 (lower left panel). The lower right panel shows that our results continue 
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to hold when we address potential concerns about changes in sample composition by lim-

iting our estimation sample to the randomly selected cross-section of Medicare benefi-

ciaries that we started with in 1999.
37

  

VI. Evidence on Financial Decisions from a Micro-Level Administrative Data Design 

Since 2006, adults age 65 and over have been able to choose standalone prescription 

drug plans (PDPs) from competing private insurers. The plans are sold in markets that are 

federally subsidized and regulated as part of the Medicare program. Economists have 

thoroughly studied financial decision making in these environments, developing several 

measures of decision making quality that have been used to analyze older adults’ abilities 

to make complex financial decisions in novel market settings (Keane and Thorp 2016). 

We use these metrics to analyze whether the negative effect of long-term PM2.5 exposure 

on cognition affect financial decision making with or without a dementia diagnosis.  

A. Measures of Decision Making in Medicare Prescription Drug Insurance Markets 

CMS divides the country into 34 geographic regions, defined as states or groups of 

adjacent states. Private insurers may design different plans for different regions; they may 

sell multiple plans in the same region; and they may change the attributes of a given plan 

in a given region from year to year. Hence, a market is a region-year pair. All Medicare 

beneficiaries in a given market choose among the same set of plans. Over the first five 

years these markets operated (2006-2010) the average beneficiary chose among 50 plans 

sold by more than 20 private insurers. Plans differ in terms of premiums, cost sharing, the 

generosity of coverage for specific drugs, pharmacy networks and customer service. 

CMS developed a webpage and a 1-800 number to help consumers gather information 

about plan quality and the cost of the drugs they take under every plan available to them.   

The default for new Medicare beneficiaries is to be uninsured, but from 2006 to 2010 

between 64% and 72% of beneficiaries chose to enroll in a PDP.
38

 After a beneficiary 

                                                 
37 The same trends hold if we exclude other air pollutants from the model, though the point estimates are slightly smaller. This is re-

ported in Appendix Figure A6. 
38 An additional 28-36% obtained prescription drug coverage from a Medicare Advantage managed health care plan that provided drug 
coverage, and the rest obtained insurance from an employer or other sources or chose to forego insurance for prescription drugs 
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chooses a plan, she is automatically re-enrolled in the same plan for each subsequent year 

unless she switches plans during the annual open enrollment period. The choice among 

plans is financially important: excluding those receiving low-income subsidies, the medi-

an enrollee spent approximately 6% of her annual household income on premiums and 

OOP costs and the difference between the total cost of the highest and lowest cost plan 

averages over $1,000.   

Prior studies developed three nonparametric measures of enrollment behavior and 

used them to assess heterogeneity in the quality of consumers’ enrollment decisions.  

1. Inertia, defined as whether an individual was passively reenrolled in her default plan 

because she did not actively switch to a different one during the annual open enroll-

ment period. Studies analyzing this metric include Ketcham et al. (2012), Kling et al. 

(2012), Ho, Hogan and Scott Morton (2015) and Heiss et al. (2016).  

2. Potential savings, defined as the amount of money an individual spent on her chosen 

bundle of drugs in her chosen plan minus what she would have spent had she pur-

chased those same drugs under the cheapest plan available to her. Studies analyzing 

this metric include Heiss, McFadden and Winter (2010), Ketcham et al. (2012), and 

Ketcham, Lucarelli and Powers (2015).  

3. Dominated choices, meaning the individual’s chosen plan was off the efficient fron-

tier in attribute space when PDPs are characterized by some combination of quality 

characteristics and moments of an individual’s distribution of potential expendi-

tures.
39

 Studies analyzing this metric include Ketcham, Kuminoff and Powers (2016a, 

2016b) and Keane et al. (2017).  

We define potential savings using the cost calculator developed by Ketcham, Lucarel-

li and Powers (2015). While interested readers can refer to that paper for details, the in-

                                                                                                                                                 
(Hoadley, Cubanski and Neumann, 2015). 
39 For example, let 𝑐𝑖𝑗𝑡 represent the consumer i’s total expenditures under plan j in year t. It equals the premium for that plan plus the 

total out of pocket cost of the bundle of prescription drugs used by the consumer. Ketcham, Kuminoff and Powers (2016a) prove that 

if utility depends on plan quality, 𝑞𝑗𝑡, and the first two moments of the distribution of potential expenditures, then a weakly risk averse 

and fully informed consumer whose preference ordering is complete, transitive and monotonic will not choose a plan j during year t if 

that plan is dominated by another plan, k, in the sense that 𝐸(𝑐𝑖𝑘𝑡) < 𝐸(𝑐𝑖𝑗𝑡), 𝑣𝑎𝑟(𝑐𝑖𝑘𝑡) < 𝑣𝑎𝑟(𝑐𝑖𝑗𝑡), and 𝑞𝑗𝑡 < 𝑞𝑘𝑡. 
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tuition is that we start with data on the universe of prescriptions filled for each person in 

each year and then hold those prescriptions fixed across all plans available to the person, 

using plan formularies and cost structures from CMS to calculate the counterfactual cost 

of the person’s chosen bundle of drugs under every alternative plan in the person’s choice 

set. We also use the calculator to implement a standard cohort-based approach to defining 

the variance of each person’s potential expenditures for each plan in each year.
40

 This 

approach assumes that informed consumers have unbiased expectations of their drug 

needs for the upcoming year, and further that their demand for drugs is perfectly inelas-

tic.
41

  

TABLE 4—MEDICARE PRESCRIPTION DRUG PLAN ENROLLMENT AND OUTCOMES 

 

Note: The table summarizes characteristics of decisions made by those enrolled in a PDP without a low-income subsidy. Cols (8) and 

(9) report the faction of all enrollees choosing plans off the efficient frontier. Col (10) is calculated only for those enrollees whose 

chosen insurer offered multiple plans. See the text for additional details.  

 

Table 4 reports summary statistics for enrollment decisions and outcomes experi-

enced by the subset of people in our data who purchased PDPs during the three year win-

                                                 
40 To define the person-plan-year specific variance, we use our full sample and assign each individual in the to 1 of 1000 cells defined 

by the deciles to which she belonged in the national distributions of the prior year’s total drug spending, days’ supply of branded 

drugs, and days’ supply of generic drugs. Then we calculate each plan’s variance from the distribution of costs from the cost calcula-
tor that arises from the distribution of drugs used by everyone in consumer i’s cell and region. If we lack a person’s prior year’s pre-

scriptions (e.g. the year they first enter the market) we predict them based on health and individual-specific future prescriptions. 
41 In prior work we have evaluated the robustness of the key findings to both of these assumptions and found that they were both 
qualitatively immaterial.   

2008 2009 2010

(1) # beneficiaries 1,325,628 1,366,338 1,389,157

(2) mean # of plans available 55 50 47

(3) active enrollment decisions (%) 21 21 16

(4) actively switched out of default plan (%) 11 10 9

(5) mean saving from switching 235 251 218

(6) mean premium + out of pocket costs ($) 1,289 1,409 1,477

(7) mean potential savings ($) 296 347 340

chose plan off efficient frontier in terms of:    

(8) cost, variance (%) 75 78 63

(9) cost, variance, star rating (%) 49 43 50

(10) cost, variance, star rating, insurer (%) 25 19 18
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dow (2008-2010) in which we can link enrollment decisions to the enrollees’ decadal pol-

lution exposures. The average person chose from between 47 and 55 plans. Rows (3) and 

(4) show the prevalence of inertia. Each year, 10% to 11% of people switched out of their 

default plans with the remaining active choices coming from a mix of (i) new enrollees, 

(ii) people whose old plans were eliminated, and (iii) people who moved to a different 

region and consequently had to choose a plan from a new menu of options. Row (5) 

shows that people who chose to actively switch plans saved an average of $218 to $251 

by switching.
42

 This is substantial savings given that the average person’s annual expend-

itures in these markets ranged from $1,289 to $1,477. Dividing row (7) by row (6) reveals 

that the average person could have reduced her annual expenditures by 22% to 24% by 

choosing the cheapest plan available to her. Rows (8) to (10) show the fraction of people 

choosing plans off the efficient frontier as we expand the frontier’s dimensionality to 

measure the variance of potential expenditures and two quality measures. The first meas-

ure is a plan-year specific star rating that CMS reports to consumers based, in part, on 

customer satisfaction surveys. The second quality measure is a set of indicators for insur-

ance companies. Including these measures recognizes that consumers may have hetero-

geneous preferences over insurer-specific characteristics such as pharmacy access and the 

ability to get drugs by mail order.    

As we move from row (7) to row (10) of Table 4 we incrementally relax the re-

strictions that we need to place on consumers’ preference relations in order to interpret 

the outcomes in those rows as evidence of decision making quality. At one extreme, treat-

ing potential savings as a measure of decision quality effectively restricts utility to be 

proportional to consumption. At the opposite extreme, row (10) places no restrictions on 

marginal rates of substitution between cost, variance and quality. Consumer sovereignty 

is respected unless the consumer could have chosen a different plan sold by their chosen 

insurer that would have lowered their expected costs, lowered their variance of potential 

expenditures, and provided equal or higher quality. 

 

                                                 
42 This statistic is calculated by the different between the person’s expenditures under their new plan and how much they would have 
spent had they purchased the same drugs under the plan they were enrolled in the prior year. 



38 

 

FIGURE 3: MEASURES OF DECISION MAKING QUALITY BY DEMENTIA DIAGNOSIS 

 
Note: The figures report outcomes of prescription drug insurance plan enrollment decisions in 2008, 2009 and 2010. The figures on 
the left describe outcomes for enrollees who made active enrollment decisions—either because they were new to the market or they 

opted out of their default plan. The figures on the right describe outcomes for enrollees who were reenrolled in their default plans 

because they took no action during the open enrollment period. See the text for additional details. 
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Figure 9 provides some motivating facts about the statistical association between 

measures of PDP choice quality and dementia. The bar charts on the left summarize ac-

tive enrollment decisions and those on the right summarize passive re-enrollment deci-

sions. Each chart reports outcomes in 2008, 2009 and 2010 for three groups of people: (i) 

those with dementia at the time of their enrollment decisions, (ii) those without dementia 

at the time of their enrollment decisions who are diagnosed with dementia before the end 

of 2013 and (iii) those who are not diagnosed with dementia before the end of 2013.  

People with dementia are 1.6 percentage points less likely to switch out of their de-

fault plans, equivalent to a 15% differential when compared to the mean switching rate. 

This is important because comparing the figures on the right to their analogs on the left 

illustrates that active choices lead to better outcomes, regardless of the metric we use, the 

year we analyze, or the person’s cognitive status. There is an equally strong relationship 

between dementia and decisions at the intensive margin when we condition on active or 

passive behavior. In both cases, current dementia patients tend to do worse than people 

who develop dementia before the end of 2013 and they, in turn, tend to do worse than 

people who do not develop dementia by the end of 2013. This relationship holds in every 

year for the level of potential savings and for each of the three dominated plan measures. 

While these figures do not condition on individual demographics they provide suggestive 

evidence that dementia impairs financial decision making. This evidence is underscored 

by the fact that dementia patients are 31 percentage points more likely to have their en-

rollment decisions made by a proxy compared to beneficiaries without dementia accord-

ing to data from the Medicare Current Beneficiary Survey.  

B. Econometric Model and Results 

We use the administrative data to assess how decadal PM2.5 exposure affects inertia, 

potential savings, and dominated choices. For each metric, we analyze the effect of PM2.5 

at the extensive margin (increasing dementia) and at the intensive margin (accelerating 

symptoms post-diagnosis and/or impairing cognition in the absence of a diagnosis). 

Equation (6) shows our econometric specification. 
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(6)     𝑦𝑖𝑏𝑗𝑟𝑡 = α (
1

10
∑ 𝑃𝑀2.5𝑖𝑠

𝑡
𝑠=𝑡−9 ) + β (

1

10
∑ 𝐶𝑃𝑖𝑠

𝑡
𝑠=𝑡−9 ) + 𝛾𝑋𝑖𝑡 + 𝜃𝑊𝑏 + 𝜂𝑗 + 𝛿𝑟𝑡 + 𝜖𝑖𝑏𝑡. 

As in prior models, covariates include individual and neighborhood demographics 

(𝑋𝑖𝑡 , 𝑊𝑏) and county dummies (𝜂𝑗). There are three differences relative to our model of 

individual dementia diagnoses in (4). First, 𝑋𝑖𝑡 is expanded to include an indicator for 

whether person i had received a dementia diagnosis by year t, along with an interaction 

between dementia and decadal PM2.5 exposure. Second, since we control for dementia 

directly, we exclude other measures of baseline health that previously served as risk fac-

tors for dementia. Finally, because relatively few people in our data chose PDPs we pool 

observations over the three year study period. At the same time, we add state-by-year 

dummies (𝛿𝑟𝑡) to absorb all of the spatial and temporal heterogeneity in the structure of 

the choice set (e.g. variation in the number of plans, the number of brands, and plan char-

acteristics).
43

 Since everyone in our sample who lives in a particular state in a particular 

year chooses among the same set of plans, the state-by-year dummies force the identifica-

tion to come from variation in how different individuals choose among the same options.   

Table 5 reports our results. Panel A summarizes our full model for measuring the ex-

tensive margin effect of air pollution (through dementia) and the intensive margin effect 

of PM2.5 on people with and without dementia. Despite including a flexible set of controls 

for individual demographics and neighborhood characteristics, we see strong negative 

effects of dementia on decision quality, consistent with the descriptive evidence in Figure 

9. Our results imply that, all else constant, having dementia is expected to increase annual 

potential saving by $62, increase inertia by reducing the probability of switching plans by 

3 percentage points, and increase the probability of choosing plans off the cost-variance 

frontier (10 percentage points), off the cost-variance-star frontier (9 percentage points) 

and off the cost-variance-star-insurer frontier (7 percentage points). Hence, dementia 

clearly worsens financial decision making. As a qualitative finding this is unsurprising, 

however the economic magnitudes and consistency across diverse measures of decision 

                                                 
43 This is potentially important because different insurers operate in different states; the insurers who operate in multiple states typical-

ly sell different plans in different states; and within a given state, insurance companies often change the features of a given plan from 

year to year (e.g. adjusting premiums or co-pays). In principle, these sources of variation could explain some of the spatiotemporal 
variation in our measures of decision making quality. 
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making quality is remarkable. Looking across the five measures of decision quality, the 

estimated dementia coefficients represent 14% to 34% increases relative to the sample 

means.  

TABLE 5: EFFECTS OF DEMENTIA AND PM2.5 ON PRESCRIPTION DRUG PLAN CHOICES  

 
Note: Panel A reports coefficients estimates from models regressing decision making outcomes on an indicator for whether the benefi-

ciary is diagnosed with Alzheimer’s disease and related dementias at the time of their enrollment decision, measures of PM2.5 interact-
ed with the dementia indicator, and other pollutants. Panel B is the same as A except that other pollutants are excluded. Panels C and 

D report the coefficient on PM2.5 from the same model as Panels A and B, but with dementia indicators excluded. All models pool data 

from 2008 to 2010 and include county dummies, state x year dummies, age x gender dummies, and covariates for individual and 
neighborhood demographics. Demographic variables are interacted with a dummy for whether the individual ever moved between 

2001 and 2010. Robust standard errors are clustered by Census block group. See the text for additional details. 

(1) (2) (3) (4) (5)

Potential                         

savings ($)

Probability of 

actively 

switching out 

of default plan

cost,                      

variance

cost,                          

variance,                         

star rating

cost,                     

variance,                    

star rating,                  

insurer

# of enrollment decisions 1,411,985 1,338,684 1,405,779 1,405,781 939,958

mean of dependent variable 330 10 72 47 20

I { dementia = 1 } 61.59*** -3.38*** 10.18*** 9.35*** 6.73***

(6.52) (0.45) (0.65) (0.80) (0.83)

1.23* 0.23*** -0.16** 0.17** 0.09

(0.64) (0.05) (0.07) (0.08) (0.08)

3.76*** -0.04 0.33*** 0.43*** 0.25***

(0.51) (0.04) (0.05) (0.06) (0.06)

I { dementia = 1 } 61.67*** -3.32*** 10.19*** 9.46*** 6.76***

(6.48) (0.45) (0.65) (0.80) (0.83)

1.45*** 0.03 -0.13** -0.07 -0.08

(0.56) (0.04) (0.06) (0.07) (0.07)

3.99*** -0.23*** 0.36*** 0.20*** 0.08*  

(0.43) (0.03) (0.04) (0.05) (0.05)

3.44*** 0.00 0.27*** 0.40*** 0.23***

(0.50) (0.04) (0.05) (0.06) (0.06)

3.64*** -0.19*** 0.29*** 0.16*** 0.06

(0.41) (0.03) (0.04) (0.05) (0.05)

D. No interaction model: excluding other pollutants

PM2.5 (1 μg/m3)

Probability chosen plan is off efficient frontier in:

I { dementia = 1 } * PM2.5 (1 μg/m3)

I { dementia = 0 } * PM2.5 (1 μg/m3)

B. Interaction model: excluding other pollutants

I { dementia = 1 } * PM2.5 (1 μg/m3)

I { dementia = 0 } * PM2.5 (1 μg/m3)

PM2.5 (1 μg/m3)

A. Interaction model: including other pollutants

C. No interaction model: including other pollutants
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Turning to the intensive margin, we find mixed evidence for the effect of higher 

PM2.5 exposures on those already diagnosed with dementia. Somewhat counterintuitively, 

two of the PM2.5 coefficients that are statistically significant for this group imply that 

higher exposures increase switching rates and decrease the probability that beneficiaries 

enroll in plans off the cost-variance frontier. One potential explanation is that PM2.5 may 

trigger other negative health shocks (e.g. heart attacks) that change the individuals’ drug 

needs in ways that incentivize them to switch plans or that reduce the dementia patient’s 

role in selecting a PDP. On the other hand, the coefficients suggest that higher exposures 

slightly increase potential savings and the probability of choosing plans off the cost-

variance-star frontier. 

By contrast, we find robust evidence that PM2.5 worsens financial decisions among 

those not diagnosed with dementia. For example, a one microgram per cubic meter in-

crease in decadal average exposure would be expected to increase potential savings by 

nearly $4 and increase the probability of choosing off-frontier plans by between 0.25 and 

0.43 percentage points depending on which measure we use. These outcomes indicate 

that the cognitive impairment from PM2.5 occurs among those even without dementia per 

se.  

As in our micro-level models of dementia diagnoses, county dummies absorb much 

of the conditional variation in individual pollutants, making it harder to distinguish their 

relative effects. Nevertheless, PM2.5 again appears to be the primary channel through 

which pollution affects cognition. Appendix Table A4 shows that 22 of the 25 coeffi-

cients on other pollutants are negative and/or indistinguishable from zero. For compari-

son, Panel B of Table 5 shows coefficients from models that exclude other pollutants. 

The coefficients on potential savings and dominated choices are qualitatively unaffected 

but, interestingly, the results on switching flip, suggesting that PM2.5 reduces switching 

rates among those not diagnosed with dementia and has no effect on those diagnosed with 

dementia. As a further comparison, Panels C and D report coefficients from the same 

models as Panels A and B, excluding the dementia indicators so that the PM2.5 coeffi-

cients can be interpreted as the net of the intensive and extensive margin effects. Finally, 
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Appendix Table A5 shows that the pattern of results in Table 5 is robust to replacing the 

ex post measures of potential savings, cost and variance with their ex ante analogs. That 

is, our general conclusions are unaffected by whether we evaluate enrollment decisions 

based on the assumption that enrollees myopically expect their year t drug needs to be 

identical to their drug use during year t-1 or whether we assume they have unbiased ex-

pectations about changes in their drug needs between years t and t+1. 

Overall, our findings for the effect of PM2.5 on PDP enrollment decisions are con-

sistent with the hypothesis that PM2.5 impairs market decisions via dementia as well as 

via decision making by those without dementia. The latter, intensive margin effect is also 

consistent with prior evidence that daily spikes in exposure to fine particulates impair 

cognitive functioning (Chang et al. 2016b) because people in areas with more spikes will 

tend to have higher long term exposure. More importantly, our findings suggest that these 

effects are widespread, economically important at exposure levels commonly observed in 

the United States, and irreversible pending a cure for dementia.  

VII. Placebo Tests 

While our research design controls for sorting across counties, neighborhood de-

mographics and pre-decadal health, it is still possible that people who were pre-disposed 

to developing dementia on the basis of genetics or other latent characteristics (e.g. early 

childhood pollution exposures) could have sorted themselves into neighborhoods within 

their home counties that were more polluted at baseline and remained that way over the 

next decade, biasing our estimates upward. In principle, there may be heterogeneity in 

individual pollution exposures even within a Census block group based on where people 

live relative to emission sources and prevailing wind patterns. If this mechanism were 

confounding our results, then we would expect to see relatively large effects for pollu-

tants that are readily observable to people because they are larger in size (particulates be-

tween 2.5 and 10 microns), they contribute to urban smog (ozone), and they are generated 

by obvious point sources such as freeways (carbon monoxide) and factories and coal-

fired power plants (nitrogen dioxide, sulfur dioxide) that may be viewed as negative 

amenities. The fact that we do not consistently find such effects supports our identifica-
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tion strategy. 

TABLE 6: EFFECTS OF PM2.5 ON PLACEBO MEASURES OF MORBIDITY IN 2010 

 
Note: Panel A reports results for each morbidity using the same specification as column (4) of Table 3. Panel B uses the same specifi-

cation as column (7) of Table 3. See the footnotes to that table for details. 

As an additional test of identification, we repeat our administrative data design for 

medical conditions that are not known to be caused by air pollution. We use them as pla-

cebos to test for confounding. Our two criteria for inclusion are: (1) the condition is not 

linked to air pollution in the economic or medical literatures, to the best of our 

knowledge, and (2) the condition is likely to be reliably diagnosed at the beginning of the 

decade.
44

 These include vision problems (cataracts and glaucoma), certain types of can-

cers (endometrial and prostate), hypothyroidism, and bipolar disorder. If our research de-

sign embeds an upward bias for the estimated effects of PM2.5 due to individuals’ sorting 

on latent characteristics, then we would expect to see large positive effects of PM2.5 on 

these morbidities. Appendix Table A6 reinforces the power of these placebos by compar-

ing the average demographic and neighborhood characteristics of people with each condi-

tion in 2010. While dementia patients are 3 to 5 years older than the average patient with 

any of the placebo conditions, they are otherwise similar in race and Census block group 

demographics. In terms of block group demographics, median house value never differs 

                                                 
44 The first criterion rules out many common medical conditions. For example, the medical literature has linked osteoporosis to air 

pollution via cadmium exposure in PM2.5 and the risk factors for diabetes include hypertension which is believed to be caused by air 

pollution. The second criterion rules out conditions such as viral hepatitis that often go undiagnosed until very late stages and post-
traumatic stress disorder and chronic pain fatigue which were diagnosed relatively rarely at the beginning of our study period.  

 Cataract Glaucoma
Endometrial 

Cancer

Prostate 

Cancer

Hypo-

thyroidism

Bipolar 

Disorder

-0.44*** 0.04 0.00 0.00 -0.04 0.02

(0.07) (0.05) (0.01) (0.02) (0.05) (0.01)

-0.21** -0.07 0.00 -0.04 -0.16*** 0.01

(0.08) (0.06) (0.01) (0.03) (0.06) (0.02)

Number of individuals 981,563 1,554,069 1,770,967 1,719,176 1,563,307 1,770,745

mean of dependent variable 65.60 17.62 0.71 4.35 19.55 1.22

A. Excluding other pollutants

B. Including other pollutants

PM2.5 (1 μg/m3)

PM2.5 (1 μg/m3)
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by more than 8% between dementia patients and placebo patients, household income 

never differs by more than 4%, the fraction with a college degree never differs by more 

than a percentage point. 

Table 6 reports results from our placebo regressions. When we exclude other pollu-

tants in Panel A all of the coefficients on PM2.5 are negative and/or indistinguishable 

from zero. This continues to be true when we include other air pollutants in Panel B. 

Hence, the placebo tests suggest an absence of confounding, further reinforcing the iden-

tification of our model. 

VIII.  Summary 

This research finds that long term cumulative exposure to small particulate matter 

causes cognitive impairment among older adults, increasing dementia rates and reducing 

the quality of financial decisions in prescription drug insurance markets. This study rep-

resents the first large scale nationwide analysis supporting the hypothesis from the medi-

cal literature that ultrafine particulates cause dementia by entering the brain. We find that 

the effect of air pollution on dementia is not driven by exposure to particulates larger than 

2.5 microns in diameter; it does not occur via vascular dementia that could result from 

pollution-induced strokes; and the effects are cumulative, consistent with clinical studies 

of lab rats and other mammals. Moreover, the human cost of these effects is substantial. 

Our results imply that reducing annual average concentrations of PM2.5 by one microgram 

per cubic meter (an 11% reduction from 2013 levels, and two-thirds of the average reduc-

tion achieved in previously highly polluted counties due to strengthening of Clean Air 

Act in 2005) would help non-poor consumers alone to save approximately $60 million 

per year on prescription drugs and yield further potential gains in consumer welfare by 

reducing the probabilities that people choose drug plans off their efficient frontiers in 

cost-variance space (by 0.2 percent), cost-variance-quality space (by 0.6 percent), and 

cost-variance-quality-insurer space (by 0.9 percent). Moreover, our results imply that the 

same moderate reduction in PM2.5 would reduce the rate of dementia by 1% to 3% (ap-

proximately 100,000 to 300,000 cases), lowering direct medical expenditures on demen-
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tia by $3.5 to $10.5 billion per year in 2017 dollars.
45
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SUPPLEMENTAL APPENDIX: FOR ONLINE PUBLICATION  

TABLE A1—SUMMARY STATISTICS FOR MEDICARE BENEFICIARY SAMPLE  

  

Note: Columns (1) and (2) report mean characteristics of beneficiaries in our main estimation samples. Column (3) adds to column (1) the 

subset of people we exclude because they enrolled in Medicare Advantage plans at some point during our study period, preventing us from 

directly observing if and when they were first diagnosed with dementia. Column (4) adds to column (3) the subset of people we exclude be-
cause they had mail delivered to a post office box at some point during our study period, preventing us from observing their residential loca-

tion.  

(1) (2) (3) (4)

Traditional 

Medicare and 

Part D

Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

# beneficiaries 7,356,473 1,182,268 10,952,024 13,603,253

always observe ZIP+4 yes yes yes no

Individual demographics

mean age at sample entry 71 69 71 71

# years in sample 8 12 8 8

male (%) 44 37 43 44

white (%) 83 94 81 81

black (%) 8 3 8 8

asian (%) 3 1 3 3

hispanic (%) 5 2 6 7

dead by end of 2013 (%) 41 27 38 39

mean age at death 83 85 83 83

ever moved (%) 18 24 20 17

ever moved county (%) 10 14 11 9

ever moved state (%) 5 7 5 5

Ever diagnosed with

stroke (%) 19 21

diabetes (%) 32 37

congestive heart failure (%) 36 37

ischemic heart disease (%) 48 58

hypertension (%) 71 87

dementia (%) 23 23

Census block group means (2012)

population over 65 (%) 18 19 18 18

bachelor's degree or higher (%) 30 32 30 30

household income (median) 62,095 64,867 61,303 61,212

house value (median) 240,730 245,717 240,985 240,599

gross rent (median) 992 985 1,003 1,003

year built (median) 1,972 1,973 1,971 1,972

owner occupied (%) 63 66 62 62

vacant (%) 11 11 10 11
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Table A2 summarizes annual average pollution exposures in 2013 and the rate at which people 

were ever observed to be diagnosed with chronic conditions between 1999 and 2013.  

TABLE A2—POLLUTION EXPOSURE AND HEALTH OUTCOMES  

 

Note: The table summarizes characteristics of beneficiaries.  

 

 

 

 

 

(1) (2) (3)

Traditional 

Medicare and 

Part D

Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

# beneficiaries 7,356,473 1,182,268 10,952,024

always observe zip+4 yes yes yes

annual average pollution (2013)

PM2.5 (hourly μg/m3) 8.9 8.9 8.9

PM10 ( hourly μg/m3) 18.5 18.4 18.8

Ozone (daily max of 8-hr mean ppm) 0.04 0.04 0.04

Carbon Monoxide (8-hr mean ppm) 0.4 0.3 0.4

Sulfur Dioxide (daily mean ppb) 9.7 9.2 9.8

Nitrogen Dioxide (hourly mean ppb) 1.2 1.2 1.2

Ever diagnosed with:

mild cognitive impairment 2 4

alzheimer's 11 12

dementia 23 23

heart attack 7 8

chronic obstructive pulmonary disease 29 32

ischemic heart disease 48 58

stroke 19 21

hypertension 71 87

lung cancer 4 4

cataract 55 80

glaucoma 19 27

schizophrenia 1 0

endometrial cancer 1 1

prostate cancer 6 7

hyperthyroidism 23 32

bipolar disorder 2 2

chronic pain fatigue 15 23
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FIGURE A1: DEMENTIA BY AGE, SEX, AND MEDICARE PART D ENROLLMENT IN 2010 

 

The figures report rates of dementia by age among females (left figure) and males (right figure) 

among those in our sample who purchased prescription drug insurance plans in Medicare Part D 

(solid line) and those who did not purchase such plans (dashed line). The figures illustrate that 

women have higher rates of dementia than men. They also illustrate that people in our Medicare 

Part D sample have higher rates of dementia, with larger differences for men. For example, at 

age 82 the rate of dementia among men in Part D is 3.8 percentage points higher those not en-

rolled in Part D, and the corresponding difference among women is 2.1 percentage points.  
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FIGURE A2: LOCATIONS OF EPA MONITORING STATIONS FOR CRITERIA AIR POLLUTANTS 

 

Each map shows the physical locations of air quality monitors for a particular criteria air pollu-

tant: particulate matter smaller than 2.5 microns in diameter (PM2.5), particulate matter smaller 

than 10 microns (PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur 

dioxide (SO2). The maps were generated using the Environmental Protection Agency’s AirData 

Air Quality Monitor app: https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-

quality-monitors  

 

 

 

 

  

https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
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 FIGURE A3: TIMELINE FOR KEY DEVELOPMENTS IN FEDERAL REGULATION OF PM2.5 

 

 

FIGURE A4: AIR POLLUTION TRENDS: UNBALANCED AND BALANCED MONITOR PANELS 

 

The figure on the left is identical to Figure 5. It displays air pollution trends based on simple av-

erages taken each year over an unbalanced panel of between 880 and 1,148 monitors per year. 

The figure on the right shows the same trends based on a balanced panel of 393 monitors in op-

eration continuously from 1999 through 2013. See the footnote to Figure 5 and the main text for 

additional details on data construction. 
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FIGURE A5—AVERAGE PM2.5 CONCENTRATIONS AT MONITORS IN MARICOPA COUNTY, AZ 

 

 

The top figure illustrates within-county variation in annual average PM2.5 concentrations for 

Maricopa County, Arizona, the fourth most populous county in the United States. The bottom 

figure shows cumulative exposures over a decade for those monitors. The vertical axis in the bot-

tom figure is indexed such that end-of-year cumulative pollution exposure in 2004 is normalized 

to equal 1. 
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Table A3 reports additional coefficients and standard errors for the models summarized in col-

umns (5) and (8) of Table 3. Coefficients on dummy variables for more than three thousand 

counties are not displayed for brevity. See the footnote to Table 3 and main text for details. 

TABLE A3—COEFFICIENT ESTIMATES FOR POLLUTION AND COVARIATES  

 
 

 

 

PM2.5 (1 μg/m3) 0.202521 (0.0579166) 0.1500863 (0.0683933)

PM10 (normalized)   0.0670632 (0.0451287)

Ozone (normalized)   0.1206198 (0.1082678)

Carbon Monoxide (normalized)   -0.0035541 (0.0332126)

Sulfur Dioxide (normalized)   0.0460945 (0.0273689)

Nitrogen Dioxide (normalized)   -0.0644762 (0.0218003)

hypertension (2001) 1.150499 (0.0681189) 1.150856 (0.0681192)

ischemic heart disease (2001) 2.239822 (0.0848003) 2.239687 (0.0847994)

congestive heart failure (2001) 3.204917 (0.1393372) 3.204329 (0.1393342)

diabetes (2001) 3.235774 (0.0976205) 3.23604 (0.0976219)

stroke (2001) 8.636097 (0.1931395) 8.636241 (0.1931420)

gross medical expenditures (2001) 0.000151 (0.0000051) 0.0001508 (0.0000051)

Census block group demographics

median household income 0.000019 (0.0000025) 0.0000192 (0.0000025)

per capital income -0.000020 (0.0000039) -0.0000203 (0.0000039)

median year built 0.029868 (0.0025084) 0.0300259 (0.0025183)

median house value 0.000001 (0.0000004) 0.00000138 (0.0000004)

average house value 0.000000 (0.0000002) -0.000000428 (0.0000002)

median gross rent -0.000007 (0.0000065) -0.00000692 (0.0000065)

% of residents over 65 -1.457811 (0.3779245) -1.451791 (0.3778685)

% white 0.663846 (0.4564386) 0.6869844 (0.4568126)

% black 0.194977 (0.5001430) 0.1895814 (0.5001494)

% hispanic -0.316866 (0.5225033) -0.2876762 (0.5222435)

% w 9th to 12th grade education -2.654097 (1.0424260) -2.633793 (1.0422230)

% with high school degree -4.912735 (0.8204136) -4.873154 (0.8203087)

% with some college -6.015854 (0.8269503) -5.982908 (0.8268664)

% with associate's degree -3.824421 (1.0262170) -3.775751 (1.0260670)

% with bachelor's degree -4.689287 (0.8403861) -4.674928 (0.8401255)

% with graduate degree -6.142397 (0.8823093) -6.126515 (0.8820682)

% owner occupied 0.729106 (0.3514544) 0.7229988 (0.3515384)

% renter occupied 2.175746 (0.3982013) 2.178072 (0.3984328)

Individual demographics  

black 3.033414 (0.1717863) 3.026481 (0.1717982)

asian 1.198946 (0.2570129) 1.190756 (0.2569887)

hispanic 2.166137 (0.2008535) 2.160633 (0.2009151)

other -1.608848 (0.3161515) -1.609054 (0.3161417)

Excluding other pollutants Including other pollutants
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TABLE A3—COEFFICIENT ESTIMATES FOR POLLUTION AND COVARIATES—CONTINUED  

 

 

Age by gender (1=male)

74 1 -0.452065 (0.1462605) -0.4527231 (0.1462610)

75 0 0.230916 (0.1476006) 0.2294635 (0.1475998)

75 1 -0.382172 (0.1542232) -0.3827317 (0.1542272)

76 0 1.391166 (0.1556889) 1.391382 (0.1556913)

76 1 0.461386 (0.1638777) 0.4601025 (0.1638794)

77 0 2.195329 (0.1643268) 2.194231 (0.1643259)

77 1 1.196929 (0.1737528) 1.195012 (0.1737572)

78 0 3.055615 (0.1687662) 3.055357 (0.1687762)

78 1 1.993318 (0.1805435) 1.992399 (0.1805518)

79 0 4.261192 (0.1747583) 4.260243 (0.1747583)

79 1 3.397797 (0.1907840) 3.396609 (0.1907906)

80 0 5.869727 (0.1819218) 5.868654 (0.1819250)

80 1 3.994539 (0.1955403) 3.99428 (0.1955408)

81 0 6.817155 (0.1894657) 6.81645 (0.1894684)

81 1 5.844848 (0.2125458) 5.844732 (0.2125439)

82 0 8.412548 (0.1980570) 8.412395 (0.1980604)

82 1 7.329208 (0.2243064) 7.32785 (0.2243046)

83 0 10.177460 (0.2060225) 10.17695 (0.2060207)

83 1 8.597155 (0.2352052) 8.595785 (0.2352180)

84 0 11.939150 (0.2176864) 11.93858 (0.2176853)

84 1 10.142840 (0.2520206) 10.14232 (0.2520182)

85 0 13.350630 (0.2295327) 13.34903 (0.2295383)

85 1 11.725470 (0.2709061) 11.72455 (0.2709131)

86 0 15.574130 (0.2431751) 15.57323 (0.2431798)

86 1 13.258940 (0.2898449) 13.25728 (0.2898385)

87 0 17.631390 (0.2608278) 17.62961 (0.2608279)

87 1 15.217340 (0.3196120) 15.21476 (0.3195952)

88 0 19.534870 (0.2797663) 19.53416 (0.2797588)

88 1 16.509550 (0.3465544) 16.50966 (0.3465581)

89 0 21.134030 (0.2979182) 21.13183 (0.2979188)

89 1 18.239290 (0.3786842) 18.23769 (0.3786907)

90 0 23.067590 (0.3298822) 23.06496 (0.3298838)

90 1 20.425780 (0.4344944) 20.42509 (0.4345004)

91 0 24.782950 (0.3726342) 24.78063 (0.3726449)

91 1 21.826650 (0.5071934) 21.82352 (0.5071879)

92 0 26.021430 (0.4028841) 26.01992 (0.4028947)

92 1 23.691440 (0.5727839) 23.69113 (0.5728247)

93 0 29.917160 (0.4608692) 29.91654 (0.4608698)

93 1 25.299060 (0.6676821) 25.29966 (0.6676619)

94 0 31.665310 (0.5197983) 31.66342 (0.5197843)

94 1 25.209630 (0.7760374) 25.21077 (0.7760350)

95 0 32.780860 (0.5886554) 32.77925 (0.5886410)

95 1 28.027730 (0.9486133) 28.02776 (0.9485652)

96 0 35.920880 (0.6664952) 35.92172 (0.6664808)

96 1 27.597770 (1.0991730) 27.5899 (1.0991220)

97 0 35.838180 (0.7705567) 35.83749 (0.7705617)

97 1 30.124370 (1.3736920) 30.12235 (1.3738200)

98 0 38.963760 (0.9144481) 38.96259 (0.9143763)

98 1 29.218030 (1.6444260) 29.21611 (1.6444700)

99 0 39.055700 (1.0935020) 39.05168 (1.0934430)

99 1 31.271620 (2.0316090) 31.27654 (2.0315810)

100 0 14.647050 (0.4348911) 14.64512 (0.4349216)

100 1 2.521316 (0.4835784) 2.508665 (0.4837968)

Excluding other pollutants Including other pollutants
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FIGURE A6: VARIATION IN THE EFFECT OF PM2.5 ON DEMENTIA BY EXPOSURE DURATION 

 

Note: This figure is the same as Figure 8 except that air pollutants other than PM2.5 are dropped from the model. The figures report point esti-

mates and 95% confidence intervals for the PM2.5 coefficient from estimating equation (5) as T increases from 2 to 15. Each data point represents 

the percentage point increase in the probability of a dementia diagnosis (vertical axis) caused by a 1 microgram per cubic meter increase in hourly 
average residential exposure to PM2.5 over a T-year period (horizontal axis) conditional on survival. The top left panel uses all individuals. Each 

of the other three panels changes one aspect of the estimation. The top right panel replaces the indicator for whether an individual had a stroke as 

of year 1 with an indicator for whether they had a stroke as of year T. The lower left panel limits the sample to 644 counties with air pollution 
monitors in 2005. The bottom right panel limits the sample to the initial cross-section of Medicare beneficiaries in 1999. Standard errors are 

clustered at the Census block group level. See the text for additional details. 
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TABLE A4: EFFECTS OF DEMENTIA AND PM2.5 ON PRESCRIPTION DRUG PLAN CHOICES BY YEAR 

 

The table corresponds to Panel A of Table 5, but additionally reports coefficients on other crite-

ria pollutants. 

 

 

  

(1) (2) (3) (4) (5)

Potential                         

savings ($)

Probability of 

actively 

switching out 

of default plan

cost,                      

variance

cost,                          

variance,                         

star rating

cost,                     

variance,                    

star rating,                  

insurer

I { ADRD = 1 } 61.59*** -3.38*** 10.18*** 9.35*** 6.73***

(6.52) (0.45) (0.65) (0.80) (0.83)

1.23* 0.23*** -0.16** 0.17** 0.09

(0.64) (0.05) (0.07) (0.08) (0.08)

3.76*** -0.04 0.33*** 0.43*** 0.25***

(0.51) (0.04) (0.05) (0.06) (0.06)

0.54* -0.07*** 0.04 0.06 -0.08** 

(0.30) (0.02) (0.03) (0.04) (0.04)

-0.70*** 0.00 -0.01 0.00 0.05

(0.23) (0.02) (0.02) (0.03) (0.03)

0.12 0.07 0.03 0.59*** 0.32***

(0.63) (0.05) (0.07) (0.09) (0.08)

-0.07 -0.09*** -0.01 -0.32*** -0.16***

(0.26) (0.02) (0.02) (0.02) (0.02)

0.03 -0.06*** 0.00 -0.03* 0.00

(0.39) (0.01) (0.01) (0.02) (0.02)

# of enrollment decisions 1,411,985 1,338,684 1,405,779 1,405,781 939,958

mean of dependent variable 330 10 72 47 20

Carbon Monoxide 

Sulfur Dioxide

Nitrogen Dioxide

PM10

Ozone

I { ADRD = 1 } * PM2.5 (1 μg/m3)

I { ADRD = 0 } * PM2.5 (1 μg/m3)

Probability chosen plan is off efficient frontier in:

A. Full Model
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TABLE A5: EFFECTS OF DEMENTIA AND PM2.5 ON PRESCRIPTION DRUG PLAN CHOICES BY YEAR 

 

The table shows results from repeating estimation of the models shown in Table 5 after replacing 

ex post measures of potential savings, cost and variance, with their ex ante analogs. The ex ante 

measures are based on the assumption that when people choose plans during the open enrollment 

period they expect their drug use over the upcoming year to be identical to the prior year. Thus, 

the ex ante measures assume that people fail to anticipate changes in their drug needs.  

 

 

(1) (2) (3) (4) (5)

Potential 

savings ($)

Probability of 

actively 

switching out 

of default plan

cost,                          

variance

cost,                          

variance,                         

star rating

cost,                     

variance,                    

star rating,                  

insurer

# of enrollment decisions 1,411,985 1,338,684 1,405,779 1,405,781 939,958

mean of dependent variable 330 10 72 47 20

I { dementia = 1 } 79.37** -3.38*** 8.03*** 7.36*** 5.43***

(33.17) (0.45) (0.63) (0.80) (0.85)

1.41 0.23*** -0.12* 0.24*** 0.15*  

(1.52) (0.05) (0.06) (0.08) (0.09)

6.40*** -0.04 0.27*** 0.43*** 0.24***

(2.05) (0.04) (0.05) (0.06) (0.06)

I { dementia = 1 } 77.14** -3.32*** 8.03*** 7.47*** 5.46***

(30.68) (0.45) (0.63) (0.80) (0.85)

2.62*** 0.03 -0.08 0.00 -0.02

(0.76) (0.04) (0.05) (0.07) (0.08)

7.43*** -0.23*** 0.31*** 0.20*** 0.07

(2.68) (0.03) (0.04) (0.05) (0.05)

5.69*** 0.00 0.22*** 0.41*** 0.24***

(1.69) (0.04) (0.05) (0.06) (0.06)

6.71*** -0.19*** 0.26*** 0.18*** 0.06

(2.29) (0.03) (0.04) (0.05) (0.05)

I { dementia = 1 } * PM2.5 (1 μg/m3)

Probability chosen plan is off efficient frontier in:

A. Interaction model: including other pollutants

I { dementia = 1 } * PM2.5 (1 μg/m3)

I { dementia = 0 } * PM2.5 (1 μg/m3)

B. Interaction model: excluding other pollutants

I { dementia = 0 } * PM2.5 (1 μg/m3)

C. No interaction model: including other pollutants

PM2.5 (1 μg/m3)

D. No interaction model: excluding other pollutants

PM2.5 (1 μg/m3)
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TABLE A6: MEAN CHARACTERISTICS OF PATIENTS AND THEIR NEIGHBORHOODS, BY MORBIDITY IN 2010 

 
 

The table reports mean characteristics of individuals and their Census block groups (in 2012) for people who had been diagnosed with 

each chronic condition before the end of 2010. 

 

# people
birth 

year

male       

(%)

white 

(%)

black        

(%)

hispanic 

(%)

median 

household 

income 

($1,000)

median 

house 

value 

($1,000)

% college 

graduates

white 

(%)

black            

(%)

hispanic 

(%)

Dementia (ADRD) 399,173 1924 34 87 7 4 62 237 31 73 11 10

Alzheimer's Disease (AD) 207,108 1924 32 86 8 4 62 239 31 73 11 10

heart attack 117,749 1926 47 90 5 3 59 220 29 75 10 10

COPD 420,149 1927 42 89 6 3 59 223 29 74 10 10

Ischemic heart disease 615,381 1928 40 88 6 3 62 237 30 74 10 10

Stroke 321,133 1926 39 88 7 3 61 235 30 74 10 10

Hypertension 652,732 1929 43 89 5 3 63 241 31 75 9 10

Lung Cancer 40,237 1928 47 90 6 2 61 236 30 74 10 10

Cataract 681,764 1929 42 88 6 3 62 238 30 75 10 10

Glaucoma 289,755 1928 37 85 8 4 64 256 32 73 10 10

Endometrial Cancer 13,791 1928 0 91 5 2 62 244 31 76 9 9

Prostate Cancer 81,101 1929 100 87 8 3 64 252 32 74 10 10

Hypothyroidism 331,059 1927 30 89 5 4 63 251 32 74 9 11

Bipolar disorder 24,798 1927 30 88 6 4 63 247 32 73 10 11

Individual Characteristics Census Block Group Characteristics


